Feature/mbedtls (#84)

* try to import mbedtls and build it

* add stubs socket class

* some boilterplate, read and write function implemented

* more boilterplate / current error in handshake because no CA cert is setup

* add something so skip ca verification, can ws curl https://google.com !

* cleanup / close implemented

* tweak CMakefiles

* typo in include

* update readme

* disable unittests
This commit is contained in:
Benjamin Sergeant
2019-06-01 17:41:48 -07:00
committed by GitHub
parent ba4a9e1586
commit 06cbebe22e
1614 changed files with 441051 additions and 13 deletions

View File

@ -0,0 +1,26 @@
add_executable(crypto_examples crypto_examples.c)
target_link_libraries(crypto_examples mbedcrypto)
add_executable(key_ladder_demo key_ladder_demo.c)
target_link_libraries(key_ladder_demo mbedcrypto)
add_executable(psa_constant_names psa_constant_names.c)
target_link_libraries(psa_constant_names mbedcrypto)
add_custom_target(
psa_constant_names_generated
COMMAND ${PYTHON_EXECUTABLE} scripts/generate_psa_constants.py
WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/../../
)
add_dependencies(psa_constant_names psa_constant_names_generated)
install(TARGETS
crypto_examples
key_ladder_demo
psa_constant_names
DESTINATION "bin"
PERMISSIONS OWNER_READ OWNER_WRITE OWNER_EXECUTE GROUP_READ GROUP_EXECUTE WORLD_READ WORLD_EXECUTE)
install(PROGRAMS
key_ladder_demo.sh
DESTINATION "bin")

View File

@ -0,0 +1,343 @@
#include "psa/crypto.h"
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#define ASSERT( predicate ) \
do \
{ \
if( ! ( predicate ) ) \
{ \
printf( "\tassertion failed at %s:%d - '%s'\r\n", \
__FILE__, __LINE__, #predicate); \
goto exit; \
} \
} while ( 0 )
#define ASSERT_STATUS( actual, expected ) \
do \
{ \
if( ( actual ) != ( expected ) ) \
{ \
printf( "\tassertion failed at %s:%d - " \
"actual:%d expected:%d\r\n", __FILE__, __LINE__, \
(psa_status_t) actual, (psa_status_t) expected ); \
goto exit; \
} \
} while ( 0 )
#if !defined(MBEDTLS_PSA_CRYPTO_C) || !defined(MBEDTLS_AES_C) || \
!defined(MBEDTLS_CIPHER_MODE_CBC) || !defined(MBEDTLS_CIPHER_MODE_CTR) || \
!defined(MBEDTLS_CIPHER_MODE_WITH_PADDING)
int main( void )
{
printf( "MBEDTLS_PSA_CRYPTO_C and/or MBEDTLS_AES_C and/or "
"MBEDTLS_CIPHER_MODE_CBC and/or MBEDTLS_CIPHER_MODE_CTR "
"and/or MBEDTLS_CIPHER_MODE_WITH_PADDING "
"not defined.\r\n" );
return( 0 );
}
#else
static psa_status_t set_key_policy( psa_key_handle_t key_handle,
psa_key_usage_t key_usage,
psa_algorithm_t alg )
{
psa_status_t status;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_key_policy_set_usage( &policy, key_usage, alg );
status = psa_set_key_policy( key_handle, &policy );
ASSERT_STATUS( status, PSA_SUCCESS );
exit:
return( status );
}
static psa_status_t cipher_operation( psa_cipher_operation_t *operation,
const uint8_t * input,
size_t input_size,
size_t part_size,
uint8_t * output,
size_t output_size,
size_t *output_len )
{
psa_status_t status;
size_t bytes_to_write = 0, bytes_written = 0, len = 0;
*output_len = 0;
while( bytes_written != input_size )
{
bytes_to_write = ( input_size - bytes_written > part_size ?
part_size :
input_size - bytes_written );
status = psa_cipher_update( operation, input + bytes_written,
bytes_to_write, output + *output_len,
output_size - *output_len, &len );
ASSERT_STATUS( status, PSA_SUCCESS );
bytes_written += bytes_to_write;
*output_len += len;
}
status = psa_cipher_finish( operation, output + *output_len,
output_size - *output_len, &len );
ASSERT_STATUS( status, PSA_SUCCESS );
*output_len += len;
exit:
return( status );
}
static psa_status_t cipher_encrypt( psa_key_handle_t key_handle,
psa_algorithm_t alg,
uint8_t * iv,
size_t iv_size,
const uint8_t * input,
size_t input_size,
size_t part_size,
uint8_t * output,
size_t output_size,
size_t *output_len )
{
psa_status_t status;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
size_t iv_len = 0;
memset( &operation, 0, sizeof( operation ) );
status = psa_cipher_encrypt_setup( &operation, key_handle, alg );
ASSERT_STATUS( status, PSA_SUCCESS );
status = psa_cipher_generate_iv( &operation, iv, iv_size, &iv_len );
ASSERT_STATUS( status, PSA_SUCCESS );
status = cipher_operation( &operation, input, input_size, part_size,
output, output_size, output_len );
ASSERT_STATUS( status, PSA_SUCCESS );
exit:
psa_cipher_abort( &operation );
return( status );
}
static psa_status_t cipher_decrypt( psa_key_handle_t key_handle,
psa_algorithm_t alg,
const uint8_t * iv,
size_t iv_size,
const uint8_t * input,
size_t input_size,
size_t part_size,
uint8_t * output,
size_t output_size,
size_t *output_len )
{
psa_status_t status;
psa_cipher_operation_t operation = PSA_CIPHER_OPERATION_INIT;
memset( &operation, 0, sizeof( operation ) );
status = psa_cipher_decrypt_setup( &operation, key_handle, alg );
ASSERT_STATUS( status, PSA_SUCCESS );
status = psa_cipher_set_iv( &operation, iv, iv_size );
ASSERT_STATUS( status, PSA_SUCCESS );
status = cipher_operation( &operation, input, input_size, part_size,
output, output_size, output_len );
ASSERT_STATUS( status, PSA_SUCCESS );
exit:
psa_cipher_abort( &operation );
return( status );
}
static psa_status_t
cipher_example_encrypt_decrypt_aes_cbc_nopad_1_block( void )
{
enum {
block_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( PSA_KEY_TYPE_AES ),
key_bits = 256,
part_size = block_size,
};
const psa_algorithm_t alg = PSA_ALG_CBC_NO_PADDING;
psa_status_t status;
psa_key_handle_t key_handle = 0;
size_t output_len = 0;
uint8_t iv[block_size];
uint8_t input[block_size];
uint8_t encrypt[block_size];
uint8_t decrypt[block_size];
status = psa_generate_random( input, sizeof( input ) );
ASSERT_STATUS( status, PSA_SUCCESS );
status = psa_allocate_key( &key_handle );
ASSERT_STATUS( status, PSA_SUCCESS );
status = set_key_policy( key_handle,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
ASSERT_STATUS( status, PSA_SUCCESS );
status = psa_generate_key( key_handle, PSA_KEY_TYPE_AES, key_bits,
NULL, 0 );
ASSERT_STATUS( status, PSA_SUCCESS );
status = cipher_encrypt( key_handle, alg, iv, sizeof( iv ),
input, sizeof( input ), part_size,
encrypt, sizeof( encrypt ), &output_len );
ASSERT_STATUS( status, PSA_SUCCESS );
status = cipher_decrypt( key_handle, alg, iv, sizeof( iv ),
encrypt, output_len, part_size,
decrypt, sizeof( decrypt ), &output_len );
ASSERT_STATUS( status, PSA_SUCCESS );
status = memcmp( input, decrypt, sizeof( input ) );
ASSERT_STATUS( status, PSA_SUCCESS );
exit:
psa_destroy_key( key_handle );
return( status );
}
static psa_status_t cipher_example_encrypt_decrypt_aes_cbc_pkcs7_multi( void )
{
enum {
block_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( PSA_KEY_TYPE_AES ),
key_bits = 256,
input_size = 100,
part_size = 10,
};
const psa_algorithm_t alg = PSA_ALG_CBC_PKCS7;
psa_status_t status;
psa_key_handle_t key_handle = 0;
size_t output_len = 0;
uint8_t iv[block_size], input[input_size],
encrypt[input_size + block_size], decrypt[input_size + block_size];
status = psa_generate_random( input, sizeof( input ) );
ASSERT_STATUS( status, PSA_SUCCESS );
status = psa_allocate_key( &key_handle );
ASSERT_STATUS( status, PSA_SUCCESS );
status = set_key_policy( key_handle,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
ASSERT_STATUS( status, PSA_SUCCESS );
status = psa_generate_key( key_handle, PSA_KEY_TYPE_AES, key_bits,
NULL, 0 );
ASSERT_STATUS( status, PSA_SUCCESS );
status = cipher_encrypt( key_handle, alg, iv, sizeof( iv ),
input, sizeof( input ), part_size,
encrypt, sizeof( encrypt ), &output_len );
ASSERT_STATUS( status, PSA_SUCCESS );
status = cipher_decrypt( key_handle, alg, iv, sizeof( iv ),
encrypt, output_len, part_size,
decrypt, sizeof( decrypt ), &output_len );
ASSERT_STATUS( status, PSA_SUCCESS );
status = memcmp( input, decrypt, sizeof( input ) );
ASSERT_STATUS( status, PSA_SUCCESS );
exit:
psa_destroy_key( key_handle );
return( status );
}
static psa_status_t cipher_example_encrypt_decrypt_aes_ctr_multi( void )
{
enum {
block_size = PSA_BLOCK_CIPHER_BLOCK_SIZE( PSA_KEY_TYPE_AES ),
key_bits = 256,
input_size = 100,
part_size = 10,
};
const psa_algorithm_t alg = PSA_ALG_CTR;
psa_status_t status;
psa_key_handle_t key_handle = 0;
size_t output_len = 0;
uint8_t iv[block_size], input[input_size], encrypt[input_size],
decrypt[input_size];
status = psa_generate_random( input, sizeof( input ) );
ASSERT_STATUS( status, PSA_SUCCESS );
status = psa_allocate_key( &key_handle );
ASSERT_STATUS( status, PSA_SUCCESS );
status = set_key_policy( key_handle,
PSA_KEY_USAGE_ENCRYPT | PSA_KEY_USAGE_DECRYPT,
alg );
ASSERT_STATUS( status, PSA_SUCCESS );
status = psa_generate_key( key_handle, PSA_KEY_TYPE_AES, key_bits,
NULL, 0 );
ASSERT_STATUS( status, PSA_SUCCESS );
status = cipher_encrypt( key_handle, alg, iv, sizeof( iv ),
input, sizeof( input ), part_size,
encrypt, sizeof( encrypt ), &output_len );
ASSERT_STATUS( status, PSA_SUCCESS );
status = cipher_decrypt( key_handle, alg, iv, sizeof( iv ),
encrypt, output_len, part_size,
decrypt, sizeof( decrypt ), &output_len );
ASSERT_STATUS( status, PSA_SUCCESS );
status = memcmp( input, decrypt, sizeof( input ) );
ASSERT_STATUS( status, PSA_SUCCESS );
exit:
psa_destroy_key( key_handle );
return( status );
}
static void cipher_examples( void )
{
psa_status_t status;
printf( "cipher encrypt/decrypt AES CBC no padding:\r\n" );
status = cipher_example_encrypt_decrypt_aes_cbc_nopad_1_block( );
if( status == PSA_SUCCESS )
printf( "\tsuccess!\r\n" );
printf( "cipher encrypt/decrypt AES CBC PKCS7 multipart:\r\n" );
status = cipher_example_encrypt_decrypt_aes_cbc_pkcs7_multi( );
if( status == PSA_SUCCESS )
printf( "\tsuccess!\r\n" );
printf( "cipher encrypt/decrypt AES CTR multipart:\r\n" );
status = cipher_example_encrypt_decrypt_aes_ctr_multi( );
if( status == PSA_SUCCESS )
printf( "\tsuccess!\r\n" );
}
#if defined(MBEDTLS_CHECK_PARAMS)
#include "mbedtls/platform_util.h"
void mbedtls_param_failed( const char *failure_condition,
const char *file,
int line )
{
printf( "%s:%i: Input param failed - %s\n",
file, line, failure_condition );
exit( EXIT_FAILURE );
}
#endif
int main( void )
{
ASSERT( psa_crypto_init( ) == PSA_SUCCESS );
cipher_examples( );
exit:
mbedtls_psa_crypto_free( );
return( 0 );
}
#endif /* MBEDTLS_PSA_CRYPTO_C && MBEDTLS_AES_C && MBEDTLS_CIPHER_MODE_CBC &&
MBEDTLS_CIPHER_MODE_CTR && MBEDTLS_CIPHER_MODE_WITH_PADDING */

View File

@ -0,0 +1,716 @@
/**
* PSA API key derivation demonstration
*
* This program calculates a key ladder: a chain of secret material, each
* derived from the previous one in a deterministic way based on a label.
* Two keys are identical if and only if they are derived from the same key
* using the same label.
*
* The initial key is called the master key. The master key is normally
* randomly generated, but it could itself be derived from another key.
*
* This program derives a series of keys called intermediate keys.
* The first intermediate key is derived from the master key using the
* first label passed on the command line. Each subsequent intermediate
* key is derived from the previous one using the next label passed
* on the command line.
*
* This program has four modes of operation:
*
* - "generate": generate a random master key.
* - "wrap": derive a wrapping key from the last intermediate key,
* and use that key to encrypt-and-authenticate some data.
* - "unwrap": derive a wrapping key from the last intermediate key,
* and use that key to decrypt-and-authenticate some
* ciphertext created by wrap mode.
* - "save": save the last intermediate key so that it can be reused as
* the master key in another run of the program.
*
* See the usage() output for the command line usage. See the file
* `key_ladder_demo.sh` for an example run.
*/
/* Copyright (C) 2018, ARM Limited, All Rights Reserved
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may
* not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* This file is part of mbed TLS (https://tls.mbed.org)
*/
/* First include Mbed TLS headers to get the Mbed TLS configuration and
* platform definitions that we'll use in this program. Also include
* standard C headers for functions we'll use here. */
#if !defined(MBEDTLS_CONFIG_FILE)
#include "mbedtls/config.h"
#else
#include MBEDTLS_CONFIG_FILE
#endif
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "mbedtls/platform_util.h" // for mbedtls_platform_zeroize
/* If the build options we need are not enabled, compile a placeholder. */
#if !defined(MBEDTLS_SHA256_C) || !defined(MBEDTLS_MD_C) || \
!defined(MBEDTLS_AES_C) || !defined(MBEDTLS_CCM_C) || \
!defined(MBEDTLS_PSA_CRYPTO_C) || !defined(MBEDTLS_FS_IO)
int main( void )
{
printf("MBEDTLS_SHA256_C and/or MBEDTLS_MD_C and/or "
"MBEDTLS_AES_C and/or MBEDTLS_CCM_C and/or "
"MBEDTLS_PSA_CRYPTO_C and/or MBEDTLS_FS_IO not defined.\n");
return( 0 );
}
#else
/* The real program starts here. */
#include <psa/crypto.h>
/* Run a system function and bail out if it fails. */
#define SYS_CHECK( expr ) \
do \
{ \
if( ! ( expr ) ) \
{ \
perror( #expr ); \
status = DEMO_ERROR; \
goto exit; \
} \
} \
while( 0 )
/* Run a PSA function and bail out if it fails. */
#define PSA_CHECK( expr ) \
do \
{ \
status = ( expr ); \
if( status != PSA_SUCCESS ) \
{ \
printf( "Error %d at line %u: %s\n", \
(int) status, \
__LINE__, \
#expr ); \
goto exit; \
} \
} \
while( 0 )
/* To report operational errors in this program, use an error code that is
* different from every PSA error code. */
#define DEMO_ERROR 120
/* The maximum supported key ladder depth. */
#define MAX_LADDER_DEPTH 10
/* Salt to use when deriving an intermediate key. */
#define DERIVE_KEY_SALT ( (uint8_t *) "key_ladder_demo.derive" )
#define DERIVE_KEY_SALT_LENGTH ( strlen( (const char*) DERIVE_KEY_SALT ) )
/* Salt to use when deriving a wrapping key. */
#define WRAPPING_KEY_SALT ( (uint8_t *) "key_ladder_demo.wrap" )
#define WRAPPING_KEY_SALT_LENGTH ( strlen( (const char*) WRAPPING_KEY_SALT ) )
/* Size of the key derivation keys (applies both to the master key and
* to intermediate keys). */
#define KEY_SIZE_BYTES 40
/* Algorithm for key derivation. */
#define KDF_ALG PSA_ALG_HKDF( PSA_ALG_SHA_256 )
/* Type and size of the key used to wrap data. */
#define WRAPPING_KEY_TYPE PSA_KEY_TYPE_AES
#define WRAPPING_KEY_BITS 128
/* Cipher mode used to wrap data. */
#define WRAPPING_ALG PSA_ALG_CCM
/* Nonce size used to wrap data. */
#define WRAPPING_IV_SIZE 13
/* Header used in files containing wrapped data. We'll save this header
* directly without worrying about data representation issues such as
* integer sizes and endianness, because the data is meant to be read
* back by the same program on the same machine. */
#define WRAPPED_DATA_MAGIC "key_ladder_demo" // including trailing null byte
#define WRAPPED_DATA_MAGIC_LENGTH ( sizeof( WRAPPED_DATA_MAGIC ) )
typedef struct
{
char magic[WRAPPED_DATA_MAGIC_LENGTH];
size_t ad_size; /* Size of the additional data, which is this header. */
size_t payload_size; /* Size of the encrypted data. */
/* Store the IV inside the additional data. It's convenient. */
uint8_t iv[WRAPPING_IV_SIZE];
} wrapped_data_header_t;
/* The modes that this program can operate in (see usage). */
enum program_mode
{
MODE_GENERATE,
MODE_SAVE,
MODE_UNWRAP,
MODE_WRAP
};
/* Save a key to a file. In the real world, you may want to export a derived
* key sometimes, to share it with another party. */
static psa_status_t save_key( psa_key_handle_t key_handle,
const char *output_file_name )
{
psa_status_t status = PSA_SUCCESS;
uint8_t key_data[KEY_SIZE_BYTES];
size_t key_size;
FILE *key_file = NULL;
PSA_CHECK( psa_export_key( key_handle,
key_data, sizeof( key_data ),
&key_size ) );
SYS_CHECK( ( key_file = fopen( output_file_name, "wb" ) ) != NULL );
SYS_CHECK( fwrite( key_data, 1, key_size, key_file ) == key_size );
SYS_CHECK( fclose( key_file ) == 0 );
key_file = NULL;
exit:
if( key_file != NULL)
fclose( key_file );
return( status );
}
/* Generate a master key for use in this demo.
*
* Normally a master key would be non-exportable. For the purpose of this
* demo, we want to save it to a file, to avoid relying on the keystore
* capability of the PSA crypto library. */
static psa_status_t generate( const char *key_file_name )
{
psa_status_t status = PSA_SUCCESS;
psa_key_handle_t key_handle = 0;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
PSA_CHECK( psa_allocate_key( &key_handle ) );
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_DERIVE | PSA_KEY_USAGE_EXPORT,
KDF_ALG );
PSA_CHECK( psa_set_key_policy( key_handle, &policy ) );
PSA_CHECK( psa_generate_key( key_handle,
PSA_KEY_TYPE_DERIVE,
PSA_BYTES_TO_BITS( KEY_SIZE_BYTES ),
NULL, 0 ) );
PSA_CHECK( save_key( key_handle, key_file_name ) );
exit:
(void) psa_destroy_key( key_handle );
return( status );
}
/* Load the master key from a file.
*
* In the real world, this master key would be stored in an internal memory
* and the storage would be managed by the keystore capability of the PSA
* crypto library. */
static psa_status_t import_key_from_file( psa_key_usage_t usage,
psa_algorithm_t alg,
const char *key_file_name,
psa_key_handle_t *master_key_handle )
{
psa_status_t status = PSA_SUCCESS;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
uint8_t key_data[KEY_SIZE_BYTES];
size_t key_size;
FILE *key_file = NULL;
unsigned char extra_byte;
*master_key_handle = 0;
SYS_CHECK( ( key_file = fopen( key_file_name, "rb" ) ) != NULL );
SYS_CHECK( ( key_size = fread( key_data, 1, sizeof( key_data ),
key_file ) ) != 0 );
if( fread( &extra_byte, 1, 1, key_file ) != 0 )
{
printf( "Key file too large (max: %u).\n",
(unsigned) sizeof( key_data ) );
status = DEMO_ERROR;
goto exit;
}
SYS_CHECK( fclose( key_file ) == 0 );
key_file = NULL;
PSA_CHECK( psa_allocate_key( master_key_handle ) );
psa_key_policy_set_usage( &policy, usage, alg );
PSA_CHECK( psa_set_key_policy( *master_key_handle, &policy ) );
PSA_CHECK( psa_import_key( *master_key_handle,
PSA_KEY_TYPE_DERIVE,
key_data, key_size ) );
exit:
if( key_file != NULL )
fclose( key_file );
mbedtls_platform_zeroize( key_data, sizeof( key_data ) );
if( status != PSA_SUCCESS )
{
/* If psa_allocate_key hasn't been called yet or has failed,
* *master_key_handle is 0. psa_destroy_key(0) is guaranteed to do
* nothing and return PSA_ERROR_INVALID_HANDLE. */
(void) psa_destroy_key( *master_key_handle );
*master_key_handle = 0;
}
return( status );
}
/* Derive the intermediate keys, using the list of labels provided on
* the command line. On input, *key_handle is a handle to the master key.
* This function closes the master key. On successful output, *key_handle
* is a handle to the final derived key. */
static psa_status_t derive_key_ladder( const char *ladder[],
size_t ladder_depth,
psa_key_handle_t *key_handle )
{
psa_status_t status = PSA_SUCCESS;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
size_t i;
psa_key_policy_set_usage( &policy,
PSA_KEY_USAGE_DERIVE | PSA_KEY_USAGE_EXPORT,
KDF_ALG );
/* For each label in turn, ... */
for( i = 0; i < ladder_depth; i++ )
{
/* Start deriving material from the master key (if i=0) or from
* the current intermediate key (if i>0). */
PSA_CHECK( psa_key_derivation(
&generator,
*key_handle,
KDF_ALG,
DERIVE_KEY_SALT, DERIVE_KEY_SALT_LENGTH,
(uint8_t*) ladder[i], strlen( ladder[i] ),
KEY_SIZE_BYTES ) );
/* When the parent key is not the master key, destroy it,
* since it is no longer needed. */
PSA_CHECK( psa_close_key( *key_handle ) );
*key_handle = 0;
PSA_CHECK( psa_allocate_key( key_handle ) );
PSA_CHECK( psa_set_key_policy( *key_handle, &policy ) );
/* Use the generator obtained from the parent key to create
* the next intermediate key. */
PSA_CHECK( psa_generator_import_key(
*key_handle,
PSA_KEY_TYPE_DERIVE,
PSA_BYTES_TO_BITS( KEY_SIZE_BYTES ),
&generator ) );
PSA_CHECK( psa_generator_abort( &generator ) );
}
exit:
psa_generator_abort( &generator );
if( status != PSA_SUCCESS )
{
psa_close_key( *key_handle );
*key_handle = 0;
}
return( status );
}
/* Derive a wrapping key from the last intermediate key. */
static psa_status_t derive_wrapping_key( psa_key_usage_t usage,
psa_key_handle_t derived_key_handle,
psa_key_handle_t *wrapping_key_handle )
{
psa_status_t status = PSA_SUCCESS;
psa_key_policy_t policy = PSA_KEY_POLICY_INIT;
psa_crypto_generator_t generator = PSA_CRYPTO_GENERATOR_INIT;
*wrapping_key_handle = 0;
PSA_CHECK( psa_allocate_key( wrapping_key_handle ) );
psa_key_policy_set_usage( &policy, usage, WRAPPING_ALG );
PSA_CHECK( psa_set_key_policy( *wrapping_key_handle, &policy ) );
PSA_CHECK( psa_key_derivation(
&generator,
derived_key_handle,
KDF_ALG,
WRAPPING_KEY_SALT, WRAPPING_KEY_SALT_LENGTH,
NULL, 0,
PSA_BITS_TO_BYTES( WRAPPING_KEY_BITS ) ) );
PSA_CHECK( psa_generator_import_key(
*wrapping_key_handle,
PSA_KEY_TYPE_AES,
WRAPPING_KEY_BITS,
&generator ) );
exit:
psa_generator_abort( &generator );
if( status != PSA_SUCCESS )
{
psa_close_key( *wrapping_key_handle );
*wrapping_key_handle = 0;
}
return( status );
}
static psa_status_t wrap_data( const char *input_file_name,
const char *output_file_name,
psa_key_handle_t wrapping_key_handle )
{
psa_status_t status;
FILE *input_file = NULL;
FILE *output_file = NULL;
long input_position;
size_t input_size;
size_t buffer_size = 0;
unsigned char *buffer = NULL;
size_t ciphertext_size;
wrapped_data_header_t header;
/* Find the size of the data to wrap. */
SYS_CHECK( ( input_file = fopen( input_file_name, "rb" ) ) != NULL );
SYS_CHECK( fseek( input_file, 0, SEEK_END ) == 0 );
SYS_CHECK( ( input_position = ftell( input_file ) ) != -1 );
#if LONG_MAX > SIZE_MAX
if( input_position > SIZE_MAX )
{
printf( "Input file too large.\n" );
status = DEMO_ERROR;
goto exit;
}
#endif
input_size = input_position;
buffer_size = PSA_AEAD_ENCRYPT_OUTPUT_SIZE( WRAPPING_ALG, input_size );
/* Check for integer overflow. */
if( buffer_size < input_size )
{
printf( "Input file too large.\n" );
status = DEMO_ERROR;
goto exit;
}
/* Load the data to wrap. */
SYS_CHECK( fseek( input_file, 0, SEEK_SET ) == 0 );
SYS_CHECK( ( buffer = calloc( 1, buffer_size ) ) != NULL );
SYS_CHECK( fread( buffer, 1, input_size, input_file ) == input_size );
SYS_CHECK( fclose( input_file ) == 0 );
input_file = NULL;
/* Construct a header. */
memcpy( &header.magic, WRAPPED_DATA_MAGIC, WRAPPED_DATA_MAGIC_LENGTH );
header.ad_size = sizeof( header );
header.payload_size = input_size;
/* Wrap the data. */
PSA_CHECK( psa_generate_random( header.iv, WRAPPING_IV_SIZE ) );
PSA_CHECK( psa_aead_encrypt( wrapping_key_handle, WRAPPING_ALG,
header.iv, WRAPPING_IV_SIZE,
(uint8_t *) &header, sizeof( header ),
buffer, input_size,
buffer, buffer_size,
&ciphertext_size ) );
/* Write the output. */
SYS_CHECK( ( output_file = fopen( output_file_name, "wb" ) ) != NULL );
SYS_CHECK( fwrite( &header, 1, sizeof( header ),
output_file ) == sizeof( header ) );
SYS_CHECK( fwrite( buffer, 1, ciphertext_size,
output_file ) == ciphertext_size );
SYS_CHECK( fclose( output_file ) == 0 );
output_file = NULL;
exit:
if( input_file != NULL )
fclose( input_file );
if( output_file != NULL )
fclose( output_file );
if( buffer != NULL )
mbedtls_platform_zeroize( buffer, buffer_size );
free( buffer );
return( status );
}
static psa_status_t unwrap_data( const char *input_file_name,
const char *output_file_name,
psa_key_handle_t wrapping_key_handle )
{
psa_status_t status;
FILE *input_file = NULL;
FILE *output_file = NULL;
unsigned char *buffer = NULL;
size_t ciphertext_size = 0;
size_t plaintext_size;
wrapped_data_header_t header;
unsigned char extra_byte;
/* Load and validate the header. */
SYS_CHECK( ( input_file = fopen( input_file_name, "rb" ) ) != NULL );
SYS_CHECK( fread( &header, 1, sizeof( header ),
input_file ) == sizeof( header ) );
if( memcmp( &header.magic, WRAPPED_DATA_MAGIC,
WRAPPED_DATA_MAGIC_LENGTH ) != 0 )
{
printf( "The input does not start with a valid magic header.\n" );
status = DEMO_ERROR;
goto exit;
}
if( header.ad_size != sizeof( header ) )
{
printf( "The header size is not correct.\n" );
status = DEMO_ERROR;
goto exit;
}
ciphertext_size =
PSA_AEAD_ENCRYPT_OUTPUT_SIZE( WRAPPING_ALG, header.payload_size );
/* Check for integer overflow. */
if( ciphertext_size < header.payload_size )
{
printf( "Input file too large.\n" );
status = DEMO_ERROR;
goto exit;
}
/* Load the payload data. */
SYS_CHECK( ( buffer = calloc( 1, ciphertext_size ) ) != NULL );
SYS_CHECK( fread( buffer, 1, ciphertext_size,
input_file ) == ciphertext_size );
if( fread( &extra_byte, 1, 1, input_file ) != 0 )
{
printf( "Extra garbage after ciphertext\n" );
status = DEMO_ERROR;
goto exit;
}
SYS_CHECK( fclose( input_file ) == 0 );
input_file = NULL;
/* Unwrap the data. */
PSA_CHECK( psa_aead_decrypt( wrapping_key_handle, WRAPPING_ALG,
header.iv, WRAPPING_IV_SIZE,
(uint8_t *) &header, sizeof( header ),
buffer, ciphertext_size,
buffer, ciphertext_size,
&plaintext_size ) );
if( plaintext_size != header.payload_size )
{
printf( "Incorrect payload size in the header.\n" );
status = DEMO_ERROR;
goto exit;
}
/* Write the output. */
SYS_CHECK( ( output_file = fopen( output_file_name, "wb" ) ) != NULL );
SYS_CHECK( fwrite( buffer, 1, plaintext_size,
output_file ) == plaintext_size );
SYS_CHECK( fclose( output_file ) == 0 );
output_file = NULL;
exit:
if( input_file != NULL )
fclose( input_file );
if( output_file != NULL )
fclose( output_file );
if( buffer != NULL )
mbedtls_platform_zeroize( buffer, ciphertext_size );
free( buffer );
return( status );
}
static psa_status_t run( enum program_mode mode,
const char *key_file_name,
const char *ladder[], size_t ladder_depth,
const char *input_file_name,
const char *output_file_name )
{
psa_status_t status = PSA_SUCCESS;
psa_key_handle_t derivation_key_handle = 0;
psa_key_handle_t wrapping_key_handle = 0;
/* Initialize the PSA crypto library. */
PSA_CHECK( psa_crypto_init( ) );
/* Generate mode is unlike the others. Generate the master key and exit. */
if( mode == MODE_GENERATE )
return( generate( key_file_name ) );
/* Read the master key. */
PSA_CHECK( import_key_from_file( PSA_KEY_USAGE_DERIVE | PSA_KEY_USAGE_EXPORT,
KDF_ALG,
key_file_name,
&derivation_key_handle ) );
/* Calculate the derived key for this session. */
PSA_CHECK( derive_key_ladder( ladder, ladder_depth,
&derivation_key_handle ) );
switch( mode )
{
case MODE_SAVE:
PSA_CHECK( save_key( derivation_key_handle, output_file_name ) );
break;
case MODE_UNWRAP:
PSA_CHECK( derive_wrapping_key( PSA_KEY_USAGE_DECRYPT,
derivation_key_handle,
&wrapping_key_handle ) );
PSA_CHECK( unwrap_data( input_file_name, output_file_name,
wrapping_key_handle ) );
break;
case MODE_WRAP:
PSA_CHECK( derive_wrapping_key( PSA_KEY_USAGE_ENCRYPT,
derivation_key_handle,
&wrapping_key_handle ) );
PSA_CHECK( wrap_data( input_file_name, output_file_name,
wrapping_key_handle ) );
break;
default:
/* Unreachable but some compilers don't realize it. */
break;
}
exit:
/* Close any remaining key. Deinitializing the crypto library would do
* this anyway, but explicitly closing handles makes the code easier
* to reuse. */
(void) psa_close_key( derivation_key_handle );
(void) psa_close_key( wrapping_key_handle );
/* Deinitialize the PSA crypto library. */
mbedtls_psa_crypto_free( );
return( status );
}
static void usage( void )
{
printf( "Usage: key_ladder_demo MODE [OPTION=VALUE]...\n" );
printf( "Demonstrate the usage of a key derivation ladder.\n" );
printf( "\n" );
printf( "Modes:\n" );
printf( " generate Generate the master key\n" );
printf( " save Save the derived key\n" );
printf( " unwrap Unwrap (decrypt) input with the derived key\n" );
printf( " wrap Wrap (encrypt) input with the derived key\n" );
printf( "\n" );
printf( "Options:\n" );
printf( " input=FILENAME Input file (required for wrap/unwrap)\n" );
printf( " master=FILENAME File containing the master key (default: master.key)\n" );
printf( " output=FILENAME Output file (required for save/wrap/unwrap)\n" );
printf( " label=TEXT Label for the key derivation.\n" );
printf( " This may be repeated multiple times.\n" );
printf( " To get the same key, you must use the same master key\n" );
printf( " and the same sequence of labels.\n" );
}
#if defined(MBEDTLS_CHECK_PARAMS)
#include "mbedtls/platform_util.h"
void mbedtls_param_failed( const char *failure_condition,
const char *file,
int line )
{
printf( "%s:%i: Input param failed - %s\n",
file, line, failure_condition );
exit( EXIT_FAILURE );
}
#endif
int main( int argc, char *argv[] )
{
const char *key_file_name = "master.key";
const char *input_file_name = NULL;
const char *output_file_name = NULL;
const char *ladder[MAX_LADDER_DEPTH];
size_t ladder_depth = 0;
int i;
enum program_mode mode;
psa_status_t status;
if( argc <= 1 ||
strcmp( argv[1], "help" ) == 0 ||
strcmp( argv[1], "-help" ) == 0 ||
strcmp( argv[1], "--help" ) == 0 )
{
usage( );
return( EXIT_SUCCESS );
}
for( i = 2; i < argc; i++ )
{
char *q = strchr( argv[i], '=' );
if( q == NULL )
{
printf( "Missing argument to option %s\n", argv[i] );
goto usage_failure;
}
*q = 0;
++q;
if( strcmp( argv[i], "input" ) == 0 )
input_file_name = q;
else if( strcmp( argv[i], "label" ) == 0 )
{
if( ladder_depth == MAX_LADDER_DEPTH )
{
printf( "Maximum ladder depth %u exceeded.\n",
(unsigned) MAX_LADDER_DEPTH );
return( EXIT_FAILURE );
}
ladder[ladder_depth] = q;
++ladder_depth;
}
else if( strcmp( argv[i], "master" ) == 0 )
key_file_name = q;
else if( strcmp( argv[i], "output" ) == 0 )
output_file_name = q;
else
{
printf( "Unknown option: %s\n", argv[i] );
goto usage_failure;
}
}
if( strcmp( argv[1], "generate" ) == 0 )
mode = MODE_GENERATE;
else if( strcmp( argv[1], "save" ) == 0 )
mode = MODE_SAVE;
else if( strcmp( argv[1], "unwrap" ) == 0 )
mode = MODE_UNWRAP;
else if( strcmp( argv[1], "wrap" ) == 0 )
mode = MODE_WRAP;
else
{
printf( "Unknown action: %s\n", argv[1] );
goto usage_failure;
}
if( input_file_name == NULL &&
( mode == MODE_WRAP || mode == MODE_UNWRAP ) )
{
printf( "Required argument missing: input\n" );
return( DEMO_ERROR );
}
if( output_file_name == NULL &&
( mode == MODE_SAVE || mode == MODE_WRAP || mode == MODE_UNWRAP ) )
{
printf( "Required argument missing: output\n" );
return( DEMO_ERROR );
}
status = run( mode, key_file_name,
ladder, ladder_depth,
input_file_name, output_file_name );
return( status == PSA_SUCCESS ?
EXIT_SUCCESS :
EXIT_FAILURE );
usage_failure:
usage( );
return( EXIT_FAILURE );
}
#endif /* MBEDTLS_SHA256_C && MBEDTLS_MD_C && MBEDTLS_AES_C && MBEDTLS_CCM_C && MBEDTLS_PSA_CRYPTO_C && MBEDTLS_FS_IO */

View File

@ -0,0 +1,49 @@
#!/bin/sh
set -e -u
program="${0%/*}"/key_ladder_demo
files_to_clean=
run () {
echo
echo "# $1"
shift
echo "+ $*"
"$@"
}
if [ -e master.key ]; then
echo "# Reusing the existing master.key file."
else
files_to_clean="$files_to_clean master.key"
run "Generate a master key." \
"$program" generate master=master.key
fi
files_to_clean="$files_to_clean input.txt hello_world.wrap"
echo "Here is some input. See it wrapped." >input.txt
run "Derive a key and wrap some data with it." \
"$program" wrap master=master.key label=hello label=world \
input=input.txt output=hello_world.wrap
files_to_clean="$files_to_clean hello_world.txt"
run "Derive the same key again and unwrap the data." \
"$program" unwrap master=master.key label=hello label=world \
input=hello_world.wrap output=hello_world.txt
run "Compare the unwrapped data with the original input." \
cmp input.txt hello_world.txt
files_to_clean="$files_to_clean hellow_orld.txt"
! run "Derive a different key and attempt to unwrap the data. This must fail." \
"$program" unwrap master=master.key input=hello_world.wrap output=hellow_orld.txt label=hellow label=orld
files_to_clean="$files_to_clean hello.key"
run "Save the first step of the key ladder, then load it as a master key and construct the rest of the ladder." \
"$program" save master=master.key label=hello \
input=hello_world.wrap output=hello.key
run "Check that we get the same key by unwrapping data made by the other key." \
"$program" unwrap master=hello.key label=world \
input=hello_world.wrap output=hello_world.txt
# Cleanup
rm -f $files_to_clean

View File

@ -0,0 +1,266 @@
#include <errno.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "psa/crypto.h"
/* This block is present to support Visual Studio builds prior to 2015 */
#if defined(_MSC_VER) && _MSC_VER < 1900
#include <stdarg.h>
int snprintf( char *s, size_t n, const char *fmt, ... )
{
int ret;
va_list argp;
/* Avoid calling the invalid parameter handler by checking ourselves */
if( s == NULL || n == 0 || fmt == NULL )
return( -1 );
va_start( argp, fmt );
#if defined(_TRUNCATE) && !defined(__MINGW32__)
ret = _vsnprintf_s( s, n, _TRUNCATE, fmt, argp );
#else
ret = _vsnprintf( s, n, fmt, argp );
if( ret < 0 || (size_t) ret == n )
{
s[n-1] = '\0';
ret = -1;
}
#endif
va_end( argp );
return( ret );
}
#endif
/* There are different GET_HASH macros for different kinds of algorithms
* built from hashes, but the values are all constructed on the
* same model. */
#define PSA_ALG_GET_HASH(alg) \
(((alg) & PSA_ALG_HASH_MASK) | PSA_ALG_CATEGORY_HASH)
static void append(char **buffer, size_t buffer_size,
size_t *required_size,
const char *string, size_t length)
{
*required_size += length;
if (*required_size < buffer_size) {
memcpy(*buffer, string, length);
*buffer += length;
}
}
static void append_integer(char **buffer, size_t buffer_size,
size_t *required_size,
const char *format /*printf format for value*/,
unsigned long value)
{
size_t n = snprintf(*buffer, buffer_size - *required_size, format, value);
if (n < buffer_size - *required_size) *buffer += n;
*required_size += n;
}
/* The code of these function is automatically generated and included below. */
static const char *psa_ecc_curve_name(psa_ecc_curve_t curve);
static const char *psa_hash_algorithm_name(psa_algorithm_t hash_alg);
static void append_with_curve(char **buffer, size_t buffer_size,
size_t *required_size,
const char *string, size_t length,
psa_ecc_curve_t curve)
{
const char *curve_name = psa_ecc_curve_name(curve);
append(buffer, buffer_size, required_size, string, length);
append(buffer, buffer_size, required_size, "(", 1);
if (curve_name != NULL) {
append(buffer, buffer_size, required_size,
curve_name, strlen(curve_name));
} else {
append_integer(buffer, buffer_size, required_size,
"0x%04x", curve);
}
append(buffer, buffer_size, required_size, ")", 1);
}
static void append_with_hash(char **buffer, size_t buffer_size,
size_t *required_size,
const char *string, size_t length,
psa_algorithm_t hash_alg)
{
const char *hash_name = psa_hash_algorithm_name(hash_alg);
append(buffer, buffer_size, required_size, string, length);
append(buffer, buffer_size, required_size, "(", 1);
if (hash_name != NULL) {
append(buffer, buffer_size, required_size,
hash_name, strlen(hash_name));
} else {
append_integer(buffer, buffer_size, required_size,
"0x%08lx", hash_alg);
}
append(buffer, buffer_size, required_size, ")", 1);
}
#include "psa_constant_names_generated.c"
static int psa_snprint_status(char *buffer, size_t buffer_size,
psa_status_t status)
{
const char *name = psa_strerror(status);
if (name == NULL) {
return snprintf(buffer, buffer_size, "%ld", (long) status);
} else {
size_t length = strlen(name);
if (length < buffer_size) {
memcpy(buffer, name, length + 1);
return (int) length;
} else {
return (int) buffer_size;
}
}
}
static int psa_snprint_ecc_curve(char *buffer, size_t buffer_size,
psa_ecc_curve_t curve)
{
const char *name = psa_ecc_curve_name(curve);
if (name == NULL) {
return snprintf(buffer, buffer_size, "0x%04x", (unsigned) curve);
} else {
size_t length = strlen(name);
if (length < buffer_size) {
memcpy(buffer, name, length + 1);
return (int) length;
} else {
return (int) buffer_size;
}
}
}
static void usage(const char *program_name)
{
printf("Usage: %s TYPE VALUE [VALUE...]\n",
program_name == NULL ? "psa_constant_names" : program_name);
printf("Print the symbolic name whose numerical value is VALUE in TYPE.\n");
printf("Supported types (with = between aliases):\n");
printf(" alg=algorithm Algorithm (psa_algorithm_t)\n");
printf(" curve=ecc_curve Elliptic curve identifier (psa_ecc_curve_t)\n");
printf(" type=key_type Key type (psa_key_type_t)\n");
printf(" usage=key_usage Key usage (psa_key_usage_t)\n");
printf(" error=status Status code (psa_status_t)\n");
}
typedef enum {
TYPE_STATUS,
} signed_value_type;
int process_signed(signed_value_type type, long min, long max, char **argp)
{
for (; *argp != NULL; argp++) {
char buffer[200];
char *end;
long value = strtol(*argp, &end, 0);
if (*end) {
printf("Non-numeric value: %s\n", *argp);
return EXIT_FAILURE;
}
if (value < min || (errno == ERANGE && value < 0)) {
printf("Value too small: %s\n", *argp);
return EXIT_FAILURE;
}
if (value > max || (errno == ERANGE && value > 0)) {
printf("Value too large: %s\n", *argp);
return EXIT_FAILURE;
}
switch (type) {
case TYPE_STATUS:
psa_snprint_status(buffer, sizeof(buffer),
(psa_status_t) value);
break;
}
puts(buffer);
}
return EXIT_SUCCESS;
}
typedef enum {
TYPE_ALGORITHM,
TYPE_ECC_CURVE,
TYPE_KEY_TYPE,
TYPE_KEY_USAGE,
} unsigned_value_type;
int process_unsigned(unsigned_value_type type, unsigned long max, char **argp)
{
for (; *argp != NULL; argp++) {
char buffer[200];
char *end;
unsigned long value = strtoul(*argp, &end, 0);
if (*end) {
printf("Non-numeric value: %s\n", *argp);
return EXIT_FAILURE;
}
if (value > max || errno == ERANGE) {
printf("Value out of range: %s\n", *argp);
return EXIT_FAILURE;
}
switch (type) {
case TYPE_ALGORITHM:
psa_snprint_algorithm(buffer, sizeof(buffer),
(psa_algorithm_t) value);
break;
case TYPE_ECC_CURVE:
psa_snprint_ecc_curve(buffer, sizeof(buffer),
(psa_ecc_curve_t) value);
break;
case TYPE_KEY_TYPE:
psa_snprint_key_type(buffer, sizeof(buffer),
(psa_key_type_t) value);
break;
case TYPE_KEY_USAGE:
psa_snprint_key_usage(buffer, sizeof(buffer),
(psa_key_usage_t) value);
break;
}
puts(buffer);
}
return EXIT_SUCCESS;
}
int main(int argc, char *argv[])
{
if (argc <= 1 ||
!strcmp(argv[1], "help") ||
!strcmp(argv[1], "--help"))
{
usage(argv[0]);
return EXIT_FAILURE;
}
if (!strcmp(argv[1], "error") || !strcmp(argv[1], "status")) {
/* There's no way to obtain the actual range of a signed type,
* so hard-code it here: psa_status_t is int32_t. */
return process_signed(TYPE_STATUS, INT32_MIN, INT32_MAX,
argv + 2);
} else if (!strcmp(argv[1], "alg") || !strcmp(argv[1], "algorithm")) {
return process_unsigned(TYPE_ALGORITHM, (psa_algorithm_t) (-1),
argv + 2);
} else if (!strcmp(argv[1], "curve") || !strcmp(argv[1], "ecc_curve")) {
return process_unsigned(TYPE_ECC_CURVE, (psa_ecc_curve_t) (-1),
argv + 2);
} else if (!strcmp(argv[1], "type") || !strcmp(argv[1], "key_type")) {
return process_unsigned(TYPE_KEY_TYPE, (psa_key_type_t) (-1),
argv + 2);
} else if (!strcmp(argv[1], "usage") || !strcmp(argv[1], "key_usage")) {
return process_unsigned(TYPE_KEY_USAGE, (psa_key_usage_t) (-1),
argv + 2);
} else {
printf("Unknown type: %s\n", argv[1]);
return EXIT_FAILURE;
}
}