This commit is contained in:
Ross Jacobs
2020-04-20 22:59:20 -07:00
committed by GitHub
parent 36257cbfe4
commit 5860c5c80b
50 changed files with 10078 additions and 8095 deletions

View File

@ -74,7 +74,7 @@ template<typename T>
inline void pad3(T n, memory_buf_t &dest)
{
static_assert(std::is_unsigned<T>::value, "pad3 must get unsigned T");
if(n < 1000)
if (n < 1000)
{
dest.push_back(static_cast<char>(n / 100 + '0'));
n = n % 100;

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -14,64 +14,53 @@
FMT_BEGIN_NAMESPACE
namespace internal {
template <typename Char>
template<typename Char>
typename buffer_context<Char>::iterator vformat_to(
const std::locale& loc, buffer<Char>& buf,
basic_string_view<Char> format_str,
basic_format_args<buffer_context<Char>> args) {
using range = buffer_range<Char>;
return vformat_to<arg_formatter<range>>(buf, to_string_view(format_str), args,
internal::locale_ref(loc));
const std::locale &loc, buffer<Char> &buf, basic_string_view<Char> format_str, basic_format_args<buffer_context<Char>> args)
{
using range = buffer_range<Char>;
return vformat_to<arg_formatter<range>>(buf, to_string_view(format_str), args, internal::locale_ref(loc));
}
template <typename Char>
std::basic_string<Char> vformat(const std::locale& loc,
basic_string_view<Char> format_str,
basic_format_args<buffer_context<Char>> args) {
basic_memory_buffer<Char> buffer;
internal::vformat_to(loc, buffer, format_str, args);
return fmt::to_string(buffer);
template<typename Char>
std::basic_string<Char> vformat(const std::locale &loc, basic_string_view<Char> format_str, basic_format_args<buffer_context<Char>> args)
{
basic_memory_buffer<Char> buffer;
internal::vformat_to(loc, buffer, format_str, args);
return fmt::to_string(buffer);
}
} // namespace internal
} // namespace internal
template <typename S, typename Char = char_t<S>>
inline std::basic_string<Char> vformat(
const std::locale& loc, const S& format_str,
basic_format_args<buffer_context<Char>> args) {
return internal::vformat(loc, to_string_view(format_str), args);
template<typename S, typename Char = char_t<S>>
inline std::basic_string<Char> vformat(const std::locale &loc, const S &format_str, basic_format_args<buffer_context<Char>> args)
{
return internal::vformat(loc, to_string_view(format_str), args);
}
template <typename S, typename... Args, typename Char = char_t<S>>
inline std::basic_string<Char> format(const std::locale& loc,
const S& format_str, Args&&... args) {
return internal::vformat(
loc, to_string_view(format_str),
{internal::make_args_checked<Args...>(format_str, args...)});
template<typename S, typename... Args, typename Char = char_t<S>>
inline std::basic_string<Char> format(const std::locale &loc, const S &format_str, Args &&... args)
{
return internal::vformat(loc, to_string_view(format_str), {internal::make_args_checked<Args...>(format_str, args...)});
}
template <typename S, typename OutputIt, typename... Args,
typename Char = enable_if_t<
internal::is_output_iterator<OutputIt>::value, char_t<S>>>
inline OutputIt vformat_to(OutputIt out, const std::locale& loc,
const S& format_str,
format_args_t<OutputIt, Char> args) {
using range = internal::output_range<OutputIt, Char>;
return vformat_to<arg_formatter<range>>(
range(out), to_string_view(format_str), args, internal::locale_ref(loc));
template<typename S, typename OutputIt, typename... Args,
typename Char = enable_if_t<internal::is_output_iterator<OutputIt>::value, char_t<S>>>
inline OutputIt vformat_to(OutputIt out, const std::locale &loc, const S &format_str, format_args_t<OutputIt, Char> args)
{
using range = internal::output_range<OutputIt, Char>;
return vformat_to<arg_formatter<range>>(range(out), to_string_view(format_str), args, internal::locale_ref(loc));
}
template <typename OutputIt, typename S, typename... Args,
FMT_ENABLE_IF(internal::is_output_iterator<OutputIt>::value&&
internal::is_string<S>::value)>
inline OutputIt format_to(OutputIt out, const std::locale& loc,
const S& format_str, Args&&... args) {
internal::check_format_string<Args...>(format_str);
using context = format_context_t<OutputIt, char_t<S>>;
format_arg_store<context, Args...> as{args...};
return vformat_to(out, loc, to_string_view(format_str),
basic_format_args<context>(as));
template<typename OutputIt, typename S, typename... Args,
FMT_ENABLE_IF(internal::is_output_iterator<OutputIt>::value &&internal::is_string<S>::value)>
inline OutputIt format_to(OutputIt out, const std::locale &loc, const S &format_str, Args &&... args)
{
internal::check_format_string<Args...>(format_str);
using context = format_context_t<OutputIt, char_t<S>>;
format_arg_store<context, Args...> as{args...};
return vformat_to(out, loc, to_string_view(format_str), basic_format_args<context>(as));
}
FMT_END_NAMESPACE
#endif // FMT_LOCALE_H_
#endif // FMT_LOCALE_H_

View File

@ -14,111 +14,122 @@
FMT_BEGIN_NAMESPACE
namespace internal {
template <class Char> class formatbuf : public std::basic_streambuf<Char> {
private:
using int_type = typename std::basic_streambuf<Char>::int_type;
using traits_type = typename std::basic_streambuf<Char>::traits_type;
template<class Char>
class formatbuf : public std::basic_streambuf<Char>
{
private:
using int_type = typename std::basic_streambuf<Char>::int_type;
using traits_type = typename std::basic_streambuf<Char>::traits_type;
buffer<Char>& buffer_;
buffer<Char> &buffer_;
public:
formatbuf(buffer<Char>& buf) : buffer_(buf) {}
public:
formatbuf(buffer<Char> &buf)
: buffer_(buf)
{}
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
protected:
// The put-area is actually always empty. This makes the implementation
// simpler and has the advantage that the streambuf and the buffer are always
// in sync and sputc never writes into uninitialized memory. The obvious
// disadvantage is that each call to sputc always results in a (virtual) call
// to overflow. There is no disadvantage here for sputn since this always
// results in a call to xsputn.
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE {
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
int_type overflow(int_type ch = traits_type::eof()) FMT_OVERRIDE
{
if (!traits_type::eq_int_type(ch, traits_type::eof()))
buffer_.push_back(static_cast<Char>(ch));
return ch;
}
std::streamsize xsputn(const Char* s, std::streamsize count) FMT_OVERRIDE {
buffer_.append(s, s + count);
return count;
}
std::streamsize xsputn(const Char *s, std::streamsize count) FMT_OVERRIDE
{
buffer_.append(s, s + count);
return count;
}
};
template <typename Char> struct test_stream : std::basic_ostream<Char> {
private:
// Hide all operator<< from std::basic_ostream<Char>.
void_t<> operator<<(null<>);
void_t<> operator<<(const Char*);
template<typename Char>
struct test_stream : std::basic_ostream<Char>
{
private:
// Hide all operator<< from std::basic_ostream<Char>.
void_t<> operator<<(null<>);
void_t<> operator<<(const Char *);
template <typename T, FMT_ENABLE_IF(std::is_convertible<T, int>::value &&
!std::is_enum<T>::value)>
void_t<> operator<<(T);
template<typename T, FMT_ENABLE_IF(std::is_convertible<T, int>::value && !std::is_enum<T>::value)>
void_t<> operator<<(T);
};
// Checks if T has a user-defined operator<< (e.g. not a member of
// std::ostream).
template <typename T, typename Char> class is_streamable {
private:
template <typename U>
static bool_constant<!std::is_same<decltype(std::declval<test_stream<Char>&>()
<< std::declval<U>()),
void_t<>>::value>
test(int);
template<typename T, typename Char>
class is_streamable
{
private:
template<typename U>
static bool_constant<!std::is_same<decltype(std::declval<test_stream<Char> &>() << std::declval<U>()), void_t<>>::value> test(int);
template <typename> static std::false_type test(...);
template<typename>
static std::false_type test(...);
using result = decltype(test<T>(0));
using result = decltype(test<T>(0));
public:
static const bool value = result::value;
public:
static const bool value = result::value;
};
// Write the content of buf to os.
template <typename Char>
void write(std::basic_ostream<Char>& os, buffer<Char>& buf) {
const Char* buf_data = buf.data();
using unsigned_streamsize = std::make_unsigned<std::streamsize>::type;
unsigned_streamsize size = buf.size();
unsigned_streamsize max_size = to_unsigned(max_value<std::streamsize>());
do {
unsigned_streamsize n = size <= max_size ? size : max_size;
os.write(buf_data, static_cast<std::streamsize>(n));
buf_data += n;
size -= n;
} while (size != 0);
template<typename Char>
void write(std::basic_ostream<Char> &os, buffer<Char> &buf)
{
const Char *buf_data = buf.data();
using unsigned_streamsize = std::make_unsigned<std::streamsize>::type;
unsigned_streamsize size = buf.size();
unsigned_streamsize max_size = to_unsigned(max_value<std::streamsize>());
do
{
unsigned_streamsize n = size <= max_size ? size : max_size;
os.write(buf_data, static_cast<std::streamsize>(n));
buf_data += n;
size -= n;
} while (size != 0);
}
template <typename Char, typename T>
void format_value(buffer<Char>& buf, const T& value,
locale_ref loc = locale_ref()) {
formatbuf<Char> format_buf(buf);
std::basic_ostream<Char> output(&format_buf);
if (loc) output.imbue(loc.get<std::locale>());
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
output << value;
buf.resize(buf.size());
template<typename Char, typename T>
void format_value(buffer<Char> &buf, const T &value, locale_ref loc = locale_ref())
{
formatbuf<Char> format_buf(buf);
std::basic_ostream<Char> output(&format_buf);
if (loc)
output.imbue(loc.get<std::locale>());
output.exceptions(std::ios_base::failbit | std::ios_base::badbit);
output << value;
buf.resize(buf.size());
}
// Formats an object of type T that has an overloaded ostream operator<<.
template <typename T, typename Char>
struct fallback_formatter<T, Char, enable_if_t<is_streamable<T, Char>::value>>
: formatter<basic_string_view<Char>, Char> {
template <typename Context>
auto format(const T& value, Context& ctx) -> decltype(ctx.out()) {
basic_memory_buffer<Char> buffer;
format_value(buffer, value, ctx.locale());
basic_string_view<Char> str(buffer.data(), buffer.size());
return formatter<basic_string_view<Char>, Char>::format(str, ctx);
}
template<typename T, typename Char>
struct fallback_formatter<T, Char, enable_if_t<is_streamable<T, Char>::value>> : formatter<basic_string_view<Char>, Char>
{
template<typename Context>
auto format(const T &value, Context &ctx) -> decltype(ctx.out())
{
basic_memory_buffer<Char> buffer;
format_value(buffer, value, ctx.locale());
basic_string_view<Char> str(buffer.data(), buffer.size());
return formatter<basic_string_view<Char>, Char>::format(str, ctx);
}
};
} // namespace internal
} // namespace internal
template <typename Char>
void vprint(std::basic_ostream<Char>& os, basic_string_view<Char> format_str,
basic_format_args<buffer_context<Char>> args) {
basic_memory_buffer<Char> buffer;
internal::vformat_to(buffer, format_str, args);
internal::write(os, buffer);
template<typename Char>
void vprint(std::basic_ostream<Char> &os, basic_string_view<Char> format_str, basic_format_args<buffer_context<Char>> args)
{
basic_memory_buffer<Char> buffer;
internal::vformat_to(buffer, format_str, args);
internal::write(os, buffer);
}
/**
@ -130,12 +141,11 @@ void vprint(std::basic_ostream<Char>& os, basic_string_view<Char> format_str,
fmt::print(cerr, "Don't {}!", "panic");
\endrst
*/
template <typename S, typename... Args,
typename Char = enable_if_t<internal::is_string<S>::value, char_t<S>>>
void print(std::basic_ostream<Char>& os, const S& format_str, Args&&... args) {
vprint(os, to_string_view(format_str),
{internal::make_args_checked<Args...>(format_str, args...)});
template<typename S, typename... Args, typename Char = enable_if_t<internal::is_string<S>::value, char_t<S>>>
void print(std::basic_ostream<Char> &os, const S &format_str, Args &&... args)
{
vprint(os, to_string_view(format_str), {internal::make_args_checked<Args...>(format_str, args...)});
}
FMT_END_NAMESPACE
#endif // FMT_OSTREAM_H_
#endif // FMT_OSTREAM_H_

View File

@ -10,65 +10,65 @@
#if defined(__MINGW32__) || defined(__CYGWIN__)
// Workaround MinGW bug https://sourceforge.net/p/mingw/bugs/2024/.
# undef __STRICT_ANSI__
#undef __STRICT_ANSI__
#endif
#include <cerrno>
#include <clocale> // for locale_t
#include <clocale> // for locale_t
#include <cstdio>
#include <cstdlib> // for strtod_l
#include <cstdlib> // for strtod_l
#include <cstddef>
#if defined __APPLE__ || defined(__FreeBSD__)
# include <xlocale.h> // for LC_NUMERIC_MASK on OS X
#include <xlocale.h> // for LC_NUMERIC_MASK on OS X
#endif
#include "format.h"
// UWP doesn't provide _pipe.
#if FMT_HAS_INCLUDE("winapifamily.h")
# include <winapifamily.h>
#include <winapifamily.h>
#endif
#if FMT_HAS_INCLUDE("fcntl.h") && \
(!defined(WINAPI_FAMILY) || (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP))
# include <fcntl.h> // for O_RDONLY
# define FMT_USE_FCNTL 1
#if FMT_HAS_INCLUDE("fcntl.h") && (!defined(WINAPI_FAMILY) || (WINAPI_FAMILY == WINAPI_FAMILY_DESKTOP_APP))
#include <fcntl.h> // for O_RDONLY
#define FMT_USE_FCNTL 1
#else
# define FMT_USE_FCNTL 0
#define FMT_USE_FCNTL 0
#endif
#ifndef FMT_POSIX
# if defined(_WIN32) && !defined(__MINGW32__)
#if defined(_WIN32) && !defined(__MINGW32__)
// Fix warnings about deprecated symbols.
# define FMT_POSIX(call) _##call
# else
# define FMT_POSIX(call) call
# endif
#define FMT_POSIX(call) _##call
#else
#define FMT_POSIX(call) call
#endif
#endif
// Calls to system functions are wrapped in FMT_SYSTEM for testability.
#ifdef FMT_SYSTEM
# define FMT_POSIX_CALL(call) FMT_SYSTEM(call)
#define FMT_POSIX_CALL(call) FMT_SYSTEM(call)
#else
# define FMT_SYSTEM(call) call
# ifdef _WIN32
#define FMT_SYSTEM(call) call
#ifdef _WIN32
// Fix warnings about deprecated symbols.
# define FMT_POSIX_CALL(call) ::_##call
# else
# define FMT_POSIX_CALL(call) ::call
# endif
#define FMT_POSIX_CALL(call) ::_##call
#else
#define FMT_POSIX_CALL(call) ::call
#endif
#endif
// Retries the expression while it evaluates to error_result and errno
// equals to EINTR.
#ifndef _WIN32
# define FMT_RETRY_VAL(result, expression, error_result) \
do { \
(result) = (expression); \
#define FMT_RETRY_VAL(result, expression, error_result) \
do \
{ \
(result) = (expression); \
} while ((result) == (error_result) && errno == EINTR)
#else
# define FMT_RETRY_VAL(result, expression, error_result) result = (expression)
#define FMT_RETRY_VAL(result, expression, error_result) result = (expression)
#endif
#define FMT_RETRY(result, expression) FMT_RETRY_VAL(result, expression, -1)
@ -100,91 +100,114 @@ FMT_BEGIN_NAMESPACE
format(std::string("{}"), 42);
\endrst
*/
template <typename Char> class basic_cstring_view {
private:
const Char* data_;
template<typename Char>
class basic_cstring_view
{
private:
const Char *data_;
public:
/** Constructs a string reference object from a C string. */
basic_cstring_view(const Char* s) : data_(s) {}
public:
/** Constructs a string reference object from a C string. */
basic_cstring_view(const Char *s)
: data_(s)
{}
/**
\rst
Constructs a string reference from an ``std::string`` object.
\endrst
*/
basic_cstring_view(const std::basic_string<Char>& s) : data_(s.c_str()) {}
/**
\rst
Constructs a string reference from an ``std::string`` object.
\endrst
*/
basic_cstring_view(const std::basic_string<Char> &s)
: data_(s.c_str())
{}
/** Returns the pointer to a C string. */
const Char* c_str() const { return data_; }
/** Returns the pointer to a C string. */
const Char *c_str() const
{
return data_;
}
};
using cstring_view = basic_cstring_view<char>;
using wcstring_view = basic_cstring_view<wchar_t>;
// An error code.
class error_code {
private:
int value_;
class error_code
{
private:
int value_;
public:
explicit error_code(int value = 0) FMT_NOEXCEPT : value_(value) {}
public:
explicit error_code(int value = 0) FMT_NOEXCEPT : value_(value) {}
int get() const FMT_NOEXCEPT { return value_; }
int get() const FMT_NOEXCEPT
{
return value_;
}
};
// A buffered file.
class buffered_file {
private:
FILE* file_;
class buffered_file
{
private:
FILE *file_;
friend class file;
friend class file;
explicit buffered_file(FILE* f) : file_(f) {}
explicit buffered_file(FILE *f)
: file_(f)
{}
public:
buffered_file(const buffered_file&) = delete;
void operator=(const buffered_file&) = delete;
public:
buffered_file(const buffered_file &) = delete;
void operator=(const buffered_file &) = delete;
// Constructs a buffered_file object which doesn't represent any file.
buffered_file() FMT_NOEXCEPT : file_(nullptr) {}
// Constructs a buffered_file object which doesn't represent any file.
buffered_file() FMT_NOEXCEPT : file_(nullptr) {}
// Destroys the object closing the file it represents if any.
FMT_API ~buffered_file() FMT_NOEXCEPT;
// Destroys the object closing the file it represents if any.
FMT_API ~buffered_file() FMT_NOEXCEPT;
public:
buffered_file(buffered_file&& other) FMT_NOEXCEPT : file_(other.file_) {
other.file_ = nullptr;
}
public:
buffered_file(buffered_file &&other) FMT_NOEXCEPT : file_(other.file_)
{
other.file_ = nullptr;
}
buffered_file& operator=(buffered_file&& other) {
close();
file_ = other.file_;
other.file_ = nullptr;
return *this;
}
buffered_file &operator=(buffered_file &&other)
{
close();
file_ = other.file_;
other.file_ = nullptr;
return *this;
}
// Opens a file.
FMT_API buffered_file(cstring_view filename, cstring_view mode);
// Opens a file.
FMT_API buffered_file(cstring_view filename, cstring_view mode);
// Closes the file.
FMT_API void close();
// Closes the file.
FMT_API void close();
// Returns the pointer to a FILE object representing this file.
FILE* get() const FMT_NOEXCEPT { return file_; }
// Returns the pointer to a FILE object representing this file.
FILE *get() const FMT_NOEXCEPT
{
return file_;
}
// We place parentheses around fileno to workaround a bug in some versions
// of MinGW that define fileno as a macro.
FMT_API int(fileno)() const;
// We place parentheses around fileno to workaround a bug in some versions
// of MinGW that define fileno as a macro.
FMT_API int(fileno)() const;
void vprint(string_view format_str, format_args args) {
fmt::vprint(file_, format_str, args);
}
void vprint(string_view format_str, format_args args)
{
fmt::vprint(file_, format_str, args);
}
template <typename... Args>
inline void print(string_view format_str, const Args&... args) {
vprint(format_str, make_format_args(args...));
}
template<typename... Args>
inline void print(string_view format_str, const Args &... args)
{
vprint(format_str, make_format_args(args...));
}
};
#if FMT_USE_FCNTL
@ -194,128 +217,158 @@ class buffered_file {
// closing the file multiple times will cause a crash on Windows rather
// than an exception. You can get standard behavior by overriding the
// invalid parameter handler with _set_invalid_parameter_handler.
class file {
private:
int fd_; // File descriptor.
class file
{
private:
int fd_; // File descriptor.
// Constructs a file object with a given descriptor.
explicit file(int fd) : fd_(fd) {}
// Constructs a file object with a given descriptor.
explicit file(int fd)
: fd_(fd)
{}
public:
// Possible values for the oflag argument to the constructor.
enum {
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR) // Open for reading and writing.
};
public:
// Possible values for the oflag argument to the constructor.
enum
{
RDONLY = FMT_POSIX(O_RDONLY), // Open for reading only.
WRONLY = FMT_POSIX(O_WRONLY), // Open for writing only.
RDWR = FMT_POSIX(O_RDWR) // Open for reading and writing.
};
// Constructs a file object which doesn't represent any file.
file() FMT_NOEXCEPT : fd_(-1) {}
// Constructs a file object which doesn't represent any file.
file() FMT_NOEXCEPT : fd_(-1) {}
// Opens a file and constructs a file object representing this file.
FMT_API file(cstring_view path, int oflag);
// Opens a file and constructs a file object representing this file.
FMT_API file(cstring_view path, int oflag);
public:
file(const file&) = delete;
void operator=(const file&) = delete;
public:
file(const file &) = delete;
void operator=(const file &) = delete;
file(file&& other) FMT_NOEXCEPT : fd_(other.fd_) { other.fd_ = -1; }
file(file &&other) FMT_NOEXCEPT : fd_(other.fd_)
{
other.fd_ = -1;
}
file& operator=(file&& other) FMT_NOEXCEPT {
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
file &operator=(file &&other) FMT_NOEXCEPT
{
close();
fd_ = other.fd_;
other.fd_ = -1;
return *this;
}
// Destroys the object closing the file it represents if any.
FMT_API ~file() FMT_NOEXCEPT;
// Destroys the object closing the file it represents if any.
FMT_API ~file() FMT_NOEXCEPT;
// Returns the file descriptor.
int descriptor() const FMT_NOEXCEPT { return fd_; }
// Returns the file descriptor.
int descriptor() const FMT_NOEXCEPT
{
return fd_;
}
// Closes the file.
FMT_API void close();
// Closes the file.
FMT_API void close();
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
FMT_API long long size() const;
// Returns the file size. The size has signed type for consistency with
// stat::st_size.
FMT_API long long size() const;
// Attempts to read count bytes from the file into the specified buffer.
FMT_API std::size_t read(void* buffer, std::size_t count);
// Attempts to read count bytes from the file into the specified buffer.
FMT_API std::size_t read(void *buffer, std::size_t count);
// Attempts to write count bytes from the specified buffer to the file.
FMT_API std::size_t write(const void* buffer, std::size_t count);
// Attempts to write count bytes from the specified buffer to the file.
FMT_API std::size_t write(const void *buffer, std::size_t count);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
FMT_API static file dup(int fd);
// Duplicates a file descriptor with the dup function and returns
// the duplicate as a file object.
FMT_API static file dup(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd);
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd, error_code& ec) FMT_NOEXCEPT;
// Makes fd be the copy of this file descriptor, closing fd first if
// necessary.
FMT_API void dup2(int fd, error_code &ec) FMT_NOEXCEPT;
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
FMT_API static void pipe(file& read_end, file& write_end);
// Creates a pipe setting up read_end and write_end file objects for reading
// and writing respectively.
FMT_API static void pipe(file &read_end, file &write_end);
// Creates a buffered_file object associated with this file and detaches
// this file object from the file.
FMT_API buffered_file fdopen(const char* mode);
// Creates a buffered_file object associated with this file and detaches
// this file object from the file.
FMT_API buffered_file fdopen(const char *mode);
};
// Returns the memory page size.
long getpagesize();
#endif // FMT_USE_FCNTL
#endif // FMT_USE_FCNTL
#ifdef FMT_LOCALE
// A "C" numeric locale.
class Locale {
private:
# ifdef _WIN32
using locale_t = _locale_t;
class Locale
{
private:
#ifdef _WIN32
using locale_t = _locale_t;
enum { LC_NUMERIC_MASK = LC_NUMERIC };
enum
{
LC_NUMERIC_MASK = LC_NUMERIC
};
static locale_t newlocale(int category_mask, const char* locale, locale_t) {
return _create_locale(category_mask, locale);
}
static locale_t newlocale(int category_mask, const char *locale, locale_t)
{
return _create_locale(category_mask, locale);
}
static void freelocale(locale_t locale) { _free_locale(locale); }
static void freelocale(locale_t locale)
{
_free_locale(locale);
}
static double strtod_l(const char* nptr, char** endptr, _locale_t locale) {
return _strtod_l(nptr, endptr, locale);
}
# endif
static double strtod_l(const char *nptr, char **endptr, _locale_t locale)
{
return _strtod_l(nptr, endptr, locale);
}
#endif
locale_t locale_;
locale_t locale_;
public:
using type = locale_t;
Locale(const Locale&) = delete;
void operator=(const Locale&) = delete;
public:
using type = locale_t;
Locale(const Locale &) = delete;
void operator=(const Locale &) = delete;
Locale() : locale_(newlocale(LC_NUMERIC_MASK, "C", nullptr)) {
if (!locale_) FMT_THROW(system_error(errno, "cannot create locale"));
}
~Locale() { freelocale(locale_); }
Locale()
: locale_(newlocale(LC_NUMERIC_MASK, "C", nullptr))
{
if (!locale_)
FMT_THROW(system_error(errno, "cannot create locale"));
}
~Locale()
{
freelocale(locale_);
}
type get() const { return locale_; }
type get() const
{
return locale_;
}
// Converts string to floating-point number and advances str past the end
// of the parsed input.
double strtod(const char*& str) const {
char* end = nullptr;
double result = strtod_l(str, &end, locale_);
str = end;
return result;
}
// Converts string to floating-point number and advances str past the end
// of the parsed input.
double strtod(const char *&str) const
{
char *end = nullptr;
double result = strtod_l(str, &end, locale_);
str = end;
return result;
}
};
#endif // FMT_LOCALE
#endif // FMT_LOCALE
FMT_END_NAMESPACE
#endif // FMT_POSIX_H_
#endif // FMT_POSIX_H_

File diff suppressed because it is too large Load Diff

View File

@ -17,324 +17,374 @@
// output only up to N items from the range.
#ifndef FMT_RANGE_OUTPUT_LENGTH_LIMIT
# define FMT_RANGE_OUTPUT_LENGTH_LIMIT 256
#define FMT_RANGE_OUTPUT_LENGTH_LIMIT 256
#endif
FMT_BEGIN_NAMESPACE
template <typename Char> struct formatting_base {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template<typename Char>
struct formatting_base
{
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return ctx.begin();
}
};
template <typename Char, typename Enable = void>
struct formatting_range : formatting_base<Char> {
static FMT_CONSTEXPR_DECL const std::size_t range_length_limit =
FMT_RANGE_OUTPUT_LENGTH_LIMIT; // output only up to N items from the
// range.
Char prefix;
Char delimiter;
Char postfix;
formatting_range() : prefix('{'), delimiter(','), postfix('}') {}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
template<typename Char, typename Enable = void>
struct formatting_range : formatting_base<Char>
{
static FMT_CONSTEXPR_DECL const std::size_t range_length_limit = FMT_RANGE_OUTPUT_LENGTH_LIMIT; // output only up to N items from the
// range.
Char prefix;
Char delimiter;
Char postfix;
formatting_range()
: prefix('{')
, delimiter(',')
, postfix('}')
{}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
};
template <typename Char, typename Enable = void>
struct formatting_tuple : formatting_base<Char> {
Char prefix;
Char delimiter;
Char postfix;
formatting_tuple() : prefix('('), delimiter(','), postfix(')') {}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
template<typename Char, typename Enable = void>
struct formatting_tuple : formatting_base<Char>
{
Char prefix;
Char delimiter;
Char postfix;
formatting_tuple()
: prefix('(')
, delimiter(',')
, postfix(')')
{}
static FMT_CONSTEXPR_DECL const bool add_delimiter_spaces = true;
static FMT_CONSTEXPR_DECL const bool add_prepostfix_space = false;
};
namespace internal {
template <typename RangeT, typename OutputIterator>
OutputIterator copy(const RangeT& range, OutputIterator out) {
for (auto it = range.begin(), end = range.end(); it != end; ++it)
*out++ = *it;
return out;
template<typename RangeT, typename OutputIterator>
OutputIterator copy(const RangeT &range, OutputIterator out)
{
for (auto it = range.begin(), end = range.end(); it != end; ++it)
*out++ = *it;
return out;
}
template <typename OutputIterator>
OutputIterator copy(const char* str, OutputIterator out) {
while (*str) *out++ = *str++;
return out;
template<typename OutputIterator>
OutputIterator copy(const char *str, OutputIterator out)
{
while (*str)
*out++ = *str++;
return out;
}
template <typename OutputIterator>
OutputIterator copy(char ch, OutputIterator out) {
*out++ = ch;
return out;
template<typename OutputIterator>
OutputIterator copy(char ch, OutputIterator out)
{
*out++ = ch;
return out;
}
/// Return true value if T has std::string interface, like std::string_view.
template <typename T> class is_like_std_string {
template <typename U>
static auto check(U* p)
-> decltype((void)p->find('a'), p->length(), (void)p->data(), int());
template <typename> static void check(...);
template<typename T>
class is_like_std_string
{
template<typename U>
static auto check(U *p) -> decltype((void)p->find('a'), p->length(), (void)p->data(), int());
template<typename>
static void check(...);
public:
static FMT_CONSTEXPR_DECL const bool value =
is_string<T>::value || !std::is_void<decltype(check<T>(nullptr))>::value;
public:
static FMT_CONSTEXPR_DECL const bool value = is_string<T>::value || !std::is_void<decltype(check<T>(nullptr))>::value;
};
template <typename Char>
struct is_like_std_string<fmt::basic_string_view<Char>> : std::true_type {};
template<typename Char>
struct is_like_std_string<fmt::basic_string_view<Char>> : std::true_type
{};
template <typename... Ts> struct conditional_helper {};
template<typename... Ts>
struct conditional_helper
{};
template <typename T, typename _ = void> struct is_range_ : std::false_type {};
template<typename T, typename _ = void>
struct is_range_ : std::false_type
{};
#if !FMT_MSC_VER || FMT_MSC_VER > 1800
template <typename T>
struct is_range_<
T, conditional_t<false,
conditional_helper<decltype(std::declval<T>().begin()),
decltype(std::declval<T>().end())>,
void>> : std::true_type {};
template<typename T>
struct is_range_<T, conditional_t<false, conditional_helper<decltype(std::declval<T>().begin()), decltype(std::declval<T>().end())>, void>>
: std::true_type
{};
#endif
/// tuple_size and tuple_element check.
template <typename T> class is_tuple_like_ {
template <typename U>
static auto check(U* p)
-> decltype(std::tuple_size<U>::value,
(void)std::declval<typename std::tuple_element<0, U>::type>(),
int());
template <typename> static void check(...);
template<typename T>
class is_tuple_like_
{
template<typename U>
static auto check(U *p) -> decltype(std::tuple_size<U>::value, (void)std::declval<typename std::tuple_element<0, U>::type>(), int());
template<typename>
static void check(...);
public:
static FMT_CONSTEXPR_DECL const bool value =
!std::is_void<decltype(check<T>(nullptr))>::value;
public:
static FMT_CONSTEXPR_DECL const bool value = !std::is_void<decltype(check<T>(nullptr))>::value;
};
// Check for integer_sequence
#if defined(__cpp_lib_integer_sequence) || FMT_MSC_VER >= 1900
template <typename T, T... N>
template<typename T, T... N>
using integer_sequence = std::integer_sequence<T, N...>;
template <std::size_t... N> using index_sequence = std::index_sequence<N...>;
template <std::size_t N>
template<std::size_t... N>
using index_sequence = std::index_sequence<N...>;
template<std::size_t N>
using make_index_sequence = std::make_index_sequence<N>;
#else
template <typename T, T... N> struct integer_sequence {
using value_type = T;
template<typename T, T... N>
struct integer_sequence
{
using value_type = T;
static FMT_CONSTEXPR std::size_t size() { return sizeof...(N); }
static FMT_CONSTEXPR std::size_t size()
{
return sizeof...(N);
}
};
template <std::size_t... N>
template<std::size_t... N>
using index_sequence = integer_sequence<std::size_t, N...>;
template <typename T, std::size_t N, T... Ns>
struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...> {};
template <typename T, T... Ns>
struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...> {};
template<typename T, std::size_t N, T... Ns>
struct make_integer_sequence : make_integer_sequence<T, N - 1, N - 1, Ns...>
{};
template<typename T, T... Ns>
struct make_integer_sequence<T, 0, Ns...> : integer_sequence<T, Ns...>
{};
template <std::size_t N>
template<std::size_t N>
using make_index_sequence = make_integer_sequence<std::size_t, N>;
#endif
template <class Tuple, class F, size_t... Is>
void for_each(index_sequence<Is...>, Tuple&& tup, F&& f) FMT_NOEXCEPT {
using std::get;
// using free function get<I>(T) now.
const int _[] = {0, ((void)f(get<Is>(tup)), 0)...};
(void)_; // blocks warnings
template<class Tuple, class F, size_t... Is>
void for_each(index_sequence<Is...>, Tuple &&tup, F &&f) FMT_NOEXCEPT
{
using std::get;
// using free function get<I>(T) now.
const int _[] = {0, ((void)f(get<Is>(tup)), 0)...};
(void)_; // blocks warnings
}
template <class T>
FMT_CONSTEXPR make_index_sequence<std::tuple_size<T>::value> get_indexes(
T const&) {
return {};
template<class T>
FMT_CONSTEXPR make_index_sequence<std::tuple_size<T>::value> get_indexes(T const &)
{
return {};
}
template <class Tuple, class F> void for_each(Tuple&& tup, F&& f) {
const auto indexes = get_indexes(tup);
for_each(indexes, std::forward<Tuple>(tup), std::forward<F>(f));
template<class Tuple, class F>
void for_each(Tuple &&tup, F &&f)
{
const auto indexes = get_indexes(tup);
for_each(indexes, std::forward<Tuple>(tup), std::forward<F>(f));
}
template <typename Arg, FMT_ENABLE_IF(!is_like_std_string<
typename std::decay<Arg>::type>::value)>
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const Arg&) {
return add_space ? " {}" : "{}";
template<typename Arg, FMT_ENABLE_IF(!is_like_std_string<typename std::decay<Arg>::type>::value)>
FMT_CONSTEXPR const char *format_str_quoted(bool add_space, const Arg &)
{
return add_space ? " {}" : "{}";
}
template <typename Arg, FMT_ENABLE_IF(is_like_std_string<
typename std::decay<Arg>::type>::value)>
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const Arg&) {
return add_space ? " \"{}\"" : "\"{}\"";
template<typename Arg, FMT_ENABLE_IF(is_like_std_string<typename std::decay<Arg>::type>::value)>
FMT_CONSTEXPR const char *format_str_quoted(bool add_space, const Arg &)
{
return add_space ? " \"{}\"" : "\"{}\"";
}
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const char*) {
return add_space ? " \"{}\"" : "\"{}\"";
FMT_CONSTEXPR const char *format_str_quoted(bool add_space, const char *)
{
return add_space ? " \"{}\"" : "\"{}\"";
}
FMT_CONSTEXPR const wchar_t* format_str_quoted(bool add_space, const wchar_t*) {
return add_space ? L" \"{}\"" : L"\"{}\"";
FMT_CONSTEXPR const wchar_t *format_str_quoted(bool add_space, const wchar_t *)
{
return add_space ? L" \"{}\"" : L"\"{}\"";
}
FMT_CONSTEXPR const char* format_str_quoted(bool add_space, const char) {
return add_space ? " '{}'" : "'{}'";
FMT_CONSTEXPR const char *format_str_quoted(bool add_space, const char)
{
return add_space ? " '{}'" : "'{}'";
}
FMT_CONSTEXPR const wchar_t* format_str_quoted(bool add_space, const wchar_t) {
return add_space ? L" '{}'" : L"'{}'";
FMT_CONSTEXPR const wchar_t *format_str_quoted(bool add_space, const wchar_t)
{
return add_space ? L" '{}'" : L"'{}'";
}
} // namespace internal
} // namespace internal
template <typename T> struct is_tuple_like {
static FMT_CONSTEXPR_DECL const bool value =
internal::is_tuple_like_<T>::value && !internal::is_range_<T>::value;
template<typename T>
struct is_tuple_like
{
static FMT_CONSTEXPR_DECL const bool value = internal::is_tuple_like_<T>::value && !internal::is_range_<T>::value;
};
template <typename TupleT, typename Char>
struct formatter<TupleT, Char, enable_if_t<fmt::is_tuple_like<TupleT>::value>> {
private:
// C++11 generic lambda for format()
template <typename FormatContext> struct format_each {
template <typename T> void operator()(const T& v) {
if (i > 0) {
if (formatting.add_prepostfix_space) {
*out++ = ' ';
template<typename TupleT, typename Char>
struct formatter<TupleT, Char, enable_if_t<fmt::is_tuple_like<TupleT>::value>>
{
private:
// C++11 generic lambda for format()
template<typename FormatContext>
struct format_each
{
template<typename T>
void operator()(const T &v)
{
if (i > 0)
{
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
out = internal::copy(formatting.delimiter, out);
}
out = format_to(out, internal::format_str_quoted((formatting.add_delimiter_spaces && i > 0), v), v);
++i;
}
out = internal::copy(formatting.delimiter, out);
}
out = format_to(out,
internal::format_str_quoted(
(formatting.add_delimiter_spaces && i > 0), v),
v);
++i;
formatting_tuple<Char> &formatting;
std::size_t &i;
typename std::add_lvalue_reference<decltype(std::declval<FormatContext>().out())>::type out;
};
public:
formatting_tuple<Char> formatting;
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return formatting.parse(ctx);
}
formatting_tuple<Char>& formatting;
std::size_t& i;
typename std::add_lvalue_reference<decltype(
std::declval<FormatContext>().out())>::type out;
};
template<typename FormatContext = format_context>
auto format(const TupleT &values, FormatContext &ctx) -> decltype(ctx.out())
{
auto out = ctx.out();
std::size_t i = 0;
internal::copy(formatting.prefix, out);
public:
formatting_tuple<Char> formatting;
internal::for_each(values, format_each<FormatContext>{formatting, i, out});
if (formatting.add_prepostfix_space)
{
*out++ = ' ';
}
internal::copy(formatting.postfix, out);
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return formatting.parse(ctx);
}
template <typename FormatContext = format_context>
auto format(const TupleT& values, FormatContext& ctx) -> decltype(ctx.out()) {
auto out = ctx.out();
std::size_t i = 0;
internal::copy(formatting.prefix, out);
internal::for_each(values, format_each<FormatContext>{formatting, i, out});
if (formatting.add_prepostfix_space) {
*out++ = ' ';
return ctx.out();
}
internal::copy(formatting.postfix, out);
return ctx.out();
}
};
template <typename T, typename Char> struct is_range {
static FMT_CONSTEXPR_DECL const bool value =
internal::is_range_<T>::value &&
!internal::is_like_std_string<T>::value &&
!std::is_convertible<T, std::basic_string<Char>>::value &&
!std::is_constructible<internal::std_string_view<Char>, T>::value;
template<typename T, typename Char>
struct is_range
{
static FMT_CONSTEXPR_DECL const bool value = internal::is_range_<T>::value && !internal::is_like_std_string<T>::value &&
!std::is_convertible<T, std::basic_string<Char>>::value &&
!std::is_constructible<internal::std_string_view<Char>, T>::value;
};
template <typename RangeT, typename Char>
struct formatter<RangeT, Char,
enable_if_t<fmt::is_range<RangeT, Char>::value>> {
formatting_range<Char> formatting;
template<typename RangeT, typename Char>
struct formatter<RangeT, Char, enable_if_t<fmt::is_range<RangeT, Char>::value>>
{
formatting_range<Char> formatting;
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return formatting.parse(ctx);
}
template <typename FormatContext>
typename FormatContext::iterator format(const RangeT& values,
FormatContext& ctx) {
auto out = internal::copy(formatting.prefix, ctx.out());
std::size_t i = 0;
for (auto it = values.begin(), end = values.end(); it != end; ++it) {
if (i > 0) {
if (formatting.add_prepostfix_space) *out++ = ' ';
out = internal::copy(formatting.delimiter, out);
}
out = format_to(out,
internal::format_str_quoted(
(formatting.add_delimiter_spaces && i > 0), *it),
*it);
if (++i > formatting.range_length_limit) {
out = format_to(out, " ... <other elements>");
break;
}
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return formatting.parse(ctx);
}
if (formatting.add_prepostfix_space) *out++ = ' ';
return internal::copy(formatting.postfix, out);
}
};
template <typename Char, typename... T> struct tuple_arg_join : internal::view {
const std::tuple<T...>& tuple;
basic_string_view<Char> sep;
tuple_arg_join(const std::tuple<T...>& t, basic_string_view<Char> s)
: tuple{t}, sep{s} {}
};
template <typename Char, typename... T>
struct formatter<tuple_arg_join<Char, T...>, Char> {
template <typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext& ctx) -> decltype(ctx.begin()) {
return ctx.begin();
}
template <typename FormatContext>
typename FormatContext::iterator format(
const tuple_arg_join<Char, T...>& value, FormatContext& ctx) {
return format(value, ctx, internal::make_index_sequence<sizeof...(T)>{});
}
private:
template <typename FormatContext, size_t... N>
typename FormatContext::iterator format(
const tuple_arg_join<Char, T...>& value, FormatContext& ctx,
internal::index_sequence<N...>) {
return format_args(value, ctx, std::get<N>(value.tuple)...);
}
template <typename FormatContext>
typename FormatContext::iterator format_args(
const tuple_arg_join<Char, T...>&, FormatContext& ctx) {
// NOTE: for compilers that support C++17, this empty function instantiation
// can be replaced with a constexpr branch in the variadic overload.
return ctx.out();
}
template <typename FormatContext, typename Arg, typename... Args>
typename FormatContext::iterator format_args(
const tuple_arg_join<Char, T...>& value, FormatContext& ctx,
const Arg& arg, const Args&... args) {
using base = formatter<typename std::decay<Arg>::type, Char>;
auto out = ctx.out();
out = base{}.format(arg, ctx);
if (sizeof...(Args) > 0) {
out = std::copy(value.sep.begin(), value.sep.end(), out);
ctx.advance_to(out);
return format_args(value, ctx, args...);
template<typename FormatContext>
typename FormatContext::iterator format(const RangeT &values, FormatContext &ctx)
{
auto out = internal::copy(formatting.prefix, ctx.out());
std::size_t i = 0;
for (auto it = values.begin(), end = values.end(); it != end; ++it)
{
if (i > 0)
{
if (formatting.add_prepostfix_space)
*out++ = ' ';
out = internal::copy(formatting.delimiter, out);
}
out = format_to(out, internal::format_str_quoted((formatting.add_delimiter_spaces && i > 0), *it), *it);
if (++i > formatting.range_length_limit)
{
out = format_to(out, " ... <other elements>");
break;
}
}
if (formatting.add_prepostfix_space)
*out++ = ' ';
return internal::copy(formatting.postfix, out);
}
};
template<typename Char, typename... T>
struct tuple_arg_join : internal::view
{
const std::tuple<T...> &tuple;
basic_string_view<Char> sep;
tuple_arg_join(const std::tuple<T...> &t, basic_string_view<Char> s)
: tuple{t}
, sep{s}
{}
};
template<typename Char, typename... T>
struct formatter<tuple_arg_join<Char, T...>, Char>
{
template<typename ParseContext>
FMT_CONSTEXPR auto parse(ParseContext &ctx) -> decltype(ctx.begin())
{
return ctx.begin();
}
template<typename FormatContext>
typename FormatContext::iterator format(const tuple_arg_join<Char, T...> &value, FormatContext &ctx)
{
return format(value, ctx, internal::make_index_sequence<sizeof...(T)>{});
}
private:
template<typename FormatContext, size_t... N>
typename FormatContext::iterator format(const tuple_arg_join<Char, T...> &value, FormatContext &ctx, internal::index_sequence<N...>)
{
return format_args(value, ctx, std::get<N>(value.tuple)...);
}
template<typename FormatContext>
typename FormatContext::iterator format_args(const tuple_arg_join<Char, T...> &, FormatContext &ctx)
{
// NOTE: for compilers that support C++17, this empty function instantiation
// can be replaced with a constexpr branch in the variadic overload.
return ctx.out();
}
template<typename FormatContext, typename Arg, typename... Args>
typename FormatContext::iterator format_args(
const tuple_arg_join<Char, T...> &value, FormatContext &ctx, const Arg &arg, const Args &... args)
{
using base = formatter<typename std::decay<Arg>::type, Char>;
auto out = ctx.out();
out = base{}.format(arg, ctx);
if (sizeof...(Args) > 0)
{
out = std::copy(value.sep.begin(), value.sep.end(), out);
ctx.advance_to(out);
return format_args(value, ctx, args...);
}
return out;
}
return out;
}
};
/**
@ -348,18 +398,18 @@ struct formatter<tuple_arg_join<Char, T...>, Char> {
// Output: "1, a"
\endrst
*/
template <typename... T>
FMT_CONSTEXPR tuple_arg_join<char, T...> join(const std::tuple<T...>& tuple,
string_view sep) {
return {tuple, sep};
template<typename... T>
FMT_CONSTEXPR tuple_arg_join<char, T...> join(const std::tuple<T...> &tuple, string_view sep)
{
return {tuple, sep};
}
template <typename... T>
FMT_CONSTEXPR tuple_arg_join<wchar_t, T...> join(const std::tuple<T...>& tuple,
wstring_view sep) {
return {tuple, sep};
template<typename... T>
FMT_CONSTEXPR tuple_arg_join<wchar_t, T...> join(const std::tuple<T...> &tuple, wstring_view sep)
{
return {tuple, sep};
}
FMT_END_NAMESPACE
#endif // FMT_RANGES_H_
#endif // FMT_RANGES_H_