/* * The MIT License (MIT) * * Copyright (c) 2012, 2013 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * IXWebSocketTransport.cpp * Author: Benjamin Sergeant * Copyright (c) 2017-2019 Machine Zone, Inc. All rights reserved. */ // // Adapted from https://github.com/dhbaird/easywsclient // #include "IXWebSocketTransport.h" #include "IXSocketFactory.h" #include "IXSocketTLSOptions.h" #include "IXUniquePtr.h" #include "IXUrlParser.h" #include "IXUtf8Validator.h" #include "IXWebSocketHandshake.h" #include "IXWebSocketHttpHeaders.h" #include #include #include #include #include #include #include #include namespace ix { const int WebSocketTransport::kDefaultPingIntervalSecs(-1); const bool WebSocketTransport::kDefaultEnablePong(true); const int WebSocketTransport::kClosingMaximumWaitingDelayInMs(300); constexpr size_t WebSocketTransport::kChunkSize; WebSocketTransport::WebSocketTransport() : _useMask(true) , _blockingSend(false) , _receivedMessageCompressed(false) , _readyState(ReadyState::CLOSED) , _closeCode(WebSocketCloseConstants::kInternalErrorCode) , _closeWireSize(0) , _closeRemote(false) , _enablePerMessageDeflate(false) , _requestInitCancellation(false) , _closingTimePoint(std::chrono::steady_clock::now()) , _enablePong(kDefaultEnablePong) , _pingIntervalSecs(kDefaultPingIntervalSecs) , _setCustomMessage(false) , _kPingMessage("ixwebsocket::heartbeat") , _pingType(SendMessageKind::Ping) , _pongReceived(false) , _pingCount(0) , _lastSendPingTimePoint(std::chrono::steady_clock::now()) { setCloseReason(WebSocketCloseConstants::kInternalErrorMessage); _readbuf.resize(kChunkSize); } WebSocketTransport::~WebSocketTransport() { ; } void WebSocketTransport::configure( const WebSocketPerMessageDeflateOptions& perMessageDeflateOptions, const SocketTLSOptions& socketTLSOptions, bool enablePong, int pingIntervalSecs) { _perMessageDeflateOptions = perMessageDeflateOptions; _enablePerMessageDeflate = _perMessageDeflateOptions.enabled(); _socketTLSOptions = socketTLSOptions; _enablePong = enablePong; _pingIntervalSecs = pingIntervalSecs; } // Client WebSocketInitResult WebSocketTransport::connectToUrl(const std::string& url, const WebSocketHttpHeaders& headers, int timeoutSecs) { std::lock_guard lock(_socketMutex); std::string protocol, host, path, query; int port; std::string remoteUrl(url); WebSocketInitResult result; const int maxRedirections = 10; for (int i = 0; i < maxRedirections; ++i) { if (!UrlParser::parse(remoteUrl, protocol, host, path, query, port)) { std::stringstream ss; ss << "Could not parse url: '" << url << "'"; return WebSocketInitResult(false, 0, ss.str()); } std::string errorMsg; bool tls = protocol == "wss"; _socket = createSocket(tls, -1, errorMsg, _socketTLSOptions); _perMessageDeflate = ix::make_unique(); if (!_socket) { return WebSocketInitResult(false, 0, errorMsg); } WebSocketHandshake webSocketHandshake(_requestInitCancellation, _socket, _perMessageDeflate, _perMessageDeflateOptions, _enablePerMessageDeflate); result = webSocketHandshake.clientHandshake( remoteUrl, headers, host, path, port, timeoutSecs); if (result.http_status >= 300 && result.http_status < 400) { auto it = result.headers.find("Location"); if (it == result.headers.end()) { std::stringstream ss; ss << "Missing Location Header for HTTP Redirect response. " << "Rejecting connection to " << url << ", status: " << result.http_status; result.errorStr = ss.str(); break; } remoteUrl = it->second; continue; } if (result.success) { setReadyState(ReadyState::OPEN); } return result; } return result; } // Server WebSocketInitResult WebSocketTransport::connectToSocket(std::unique_ptr socket, int timeoutSecs, bool enablePerMessageDeflate, HttpRequestPtr request) { std::lock_guard lock(_socketMutex); // Server should not mask the data it sends to the client _useMask = false; _blockingSend = true; _socket = std::move(socket); _perMessageDeflate = ix::make_unique(); WebSocketHandshake webSocketHandshake(_requestInitCancellation, _socket, _perMessageDeflate, _perMessageDeflateOptions, _enablePerMessageDeflate); auto result = webSocketHandshake.serverHandshake(timeoutSecs, enablePerMessageDeflate, request); if (result.success) { setReadyState(ReadyState::OPEN); } return result; } WebSocketTransport::ReadyState WebSocketTransport::getReadyState() const { return _readyState; } void WebSocketTransport::setReadyState(ReadyState readyState) { // No state change, return if (_readyState == readyState) return; if (readyState == ReadyState::CLOSED) { if (_onCloseCallback) { _onCloseCallback(_closeCode, getCloseReason(), _closeWireSize, _closeRemote); } setCloseReason(WebSocketCloseConstants::kInternalErrorMessage); _closeCode = WebSocketCloseConstants::kInternalErrorCode; _closeWireSize = 0; _closeRemote = false; } else if (readyState == ReadyState::OPEN) { initTimePointsAfterConnect(); _pongReceived = false; } _readyState = readyState; } void WebSocketTransport::setOnCloseCallback(const OnCloseCallback& onCloseCallback) { _onCloseCallback = onCloseCallback; } void WebSocketTransport::initTimePointsAfterConnect() { { std::lock_guard lock(_lastSendPingTimePointMutex); _lastSendPingTimePoint = std::chrono::steady_clock::now(); } } // Only consider send PING time points for that computation. bool WebSocketTransport::pingIntervalExceeded() { if (_pingIntervalSecs <= 0) return false; std::lock_guard lock(_lastSendPingTimePointMutex); auto now = std::chrono::steady_clock::now(); return now - _lastSendPingTimePoint > std::chrono::seconds(_pingIntervalSecs); } void WebSocketTransport::setPingMessage(const std::string& message, SendMessageKind pingType) { _setCustomMessage = true; _kPingMessage = message; _pingType = pingType; } WebSocketSendInfo WebSocketTransport::sendHeartBeat(SendMessageKind pingMessage) { _pongReceived = false; std::stringstream ss; ss << _kPingMessage; if (!_setCustomMessage) { ss << "::" << _pingIntervalSecs << "s" << "::" << _pingCount++; } if (pingMessage == SendMessageKind::Ping) { return sendPing(ss.str()); } else if (pingMessage == SendMessageKind::Binary) { WebSocketSendInfo info = sendBinary(ss.str(), nullptr); if (info.success) { std::lock_guard lck(_lastSendPingTimePointMutex); _lastSendPingTimePoint = std::chrono::steady_clock::now(); } return info; } else if (pingMessage == SendMessageKind::Text) { WebSocketSendInfo info = sendText(ss.str(), nullptr); if (info.success) { std::lock_guard lck(_lastSendPingTimePointMutex); _lastSendPingTimePoint = std::chrono::steady_clock::now(); } return info; } // unknow type ping message return {}; } bool WebSocketTransport::closingDelayExceeded() { std::lock_guard lock(_closingTimePointMutex); auto now = std::chrono::steady_clock::now(); return now - _closingTimePoint > std::chrono::milliseconds(kClosingMaximumWaitingDelayInMs); } WebSocketTransport::PollResult WebSocketTransport::poll() { if (_readyState == ReadyState::OPEN) { if (pingIntervalExceeded()) { // If it is not a 'ping' message of ping type, there is no need to judge whether // pong will receive it if (_pingType == SendMessageKind::Ping && !_pongReceived) { // ping response (PONG) exceeds the maximum delay, close the connection close(WebSocketCloseConstants::kInternalErrorCode, WebSocketCloseConstants::kPingTimeoutMessage); } else { sendHeartBeat(_pingType); } } } // No timeout if state is not OPEN, otherwise computed // pingIntervalOrTimeoutGCD (equals to -1 if no ping and no ping timeout are set) int lastingTimeoutDelayInMs = (_readyState != ReadyState::OPEN) ? 0 : _pingIntervalSecs; if (_pingIntervalSecs > 0) { // compute lasting delay to wait for next ping / timeout, if at least one set auto now = std::chrono::steady_clock::now(); int timeSinceLastPingMs = (int) std::chrono::duration_cast( now - _lastSendPingTimePoint) .count(); lastingTimeoutDelayInMs = (1000 * _pingIntervalSecs) - timeSinceLastPingMs; } // The platform may not have select interrupt capabilities, so wait with a small timeout if (lastingTimeoutDelayInMs <= 0 && !_socket->isWakeUpFromPollSupported()) { lastingTimeoutDelayInMs = 20; } // If we are requesting a cancellation, pass in a positive and small timeout // to never poll forever without a timeout. if (_requestInitCancellation) { lastingTimeoutDelayInMs = 100; } // poll the socket PollResultType pollResult = _socket->isReadyToRead(lastingTimeoutDelayInMs); // Make sure we send all the buffered data // there can be a lot of it for large messages. if (pollResult == PollResultType::SendRequest) { if (!flushSendBuffer()) { return PollResult::CannotFlushSendBuffer; } } else if (pollResult == PollResultType::ReadyForRead) { if (!receiveFromSocket()) { return PollResult::AbnormalClose; } } else if (pollResult == PollResultType::Error) { closeSocket(); } else if (pollResult == PollResultType::CloseRequest) { closeSocket(); } if (_readyState == ReadyState::CLOSING && closingDelayExceeded()) { _rxbuf.clear(); // close code and reason were set when calling close() closeSocket(); setReadyState(ReadyState::CLOSED); } return PollResult::Succeeded; } bool WebSocketTransport::isSendBufferEmpty() const { std::lock_guard lock(_txbufMutex); return _txbuf.empty(); } template void WebSocketTransport::appendToSendBuffer(const std::vector& header, Iterator begin, Iterator end, uint64_t message_size, uint8_t masking_key[4]) { std::lock_guard lock(_txbufMutex); _txbuf.insert(_txbuf.end(), header.begin(), header.end()); _txbuf.insert(_txbuf.end(), begin, end); if (_useMask) { for (size_t i = 0; i != (size_t) message_size; ++i) { *(_txbuf.end() - (size_t) message_size + i) ^= masking_key[i & 0x3]; } } } void WebSocketTransport::unmaskReceiveBuffer(const wsheader_type& ws) { if (ws.mask) { for (size_t j = 0; j != ws.N; ++j) { _rxbuf[j + ws.header_size] ^= ws.masking_key[j & 0x3]; } } } // // http://tools.ietf.org/html/rfc6455#section-5.2 Base Framing Protocol // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-------+-+-------------+-------------------------------+ // |F|R|R|R| opcode|M| Payload len | Extended payload length | // |I|S|S|S| (4) |A| (7) | (16/64) | // |N|V|V|V| |S| | (if payload len==126/127) | // | |1|2|3| |K| | | // +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - + // | Extended payload length continued, if payload len == 127 | // + - - - - - - - - - - - - - - - +-------------------------------+ // | |Masking-key, if MASK set to 1 | // +-------------------------------+-------------------------------+ // | Masking-key (continued) | Payload Data | // +-------------------------------- - - - - - - - - - - - - - - - + // : Payload Data continued ... : // + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // | Payload Data continued ... | // +---------------------------------------------------------------+ // void WebSocketTransport::dispatch(WebSocketTransport::PollResult pollResult, const OnMessageCallback& onMessageCallback) { while (true) { wsheader_type ws; if (_rxbuf.size() < 2) break; /* Need at least 2 */ const uint8_t* data = (uint8_t*) &_rxbuf[0]; // peek, but don't consume ws.fin = (data[0] & 0x80) == 0x80; ws.rsv1 = (data[0] & 0x40) == 0x40; ws.rsv2 = (data[0] & 0x20) == 0x20; ws.rsv3 = (data[0] & 0x10) == 0x10; ws.opcode = (wsheader_type::opcode_type)(data[0] & 0x0f); ws.mask = (data[1] & 0x80) == 0x80; ws.N0 = (data[1] & 0x7f); ws.header_size = 2 + (ws.N0 == 126 ? 2 : 0) + (ws.N0 == 127 ? 8 : 0) + (ws.mask ? 4 : 0); if (_rxbuf.size() < ws.header_size) break; /* Need: ws.header_size - _rxbuf.size() */ if ((ws.rsv1 && !_enablePerMessageDeflate) || ws.rsv2 || ws.rsv3) { close(WebSocketCloseConstants::kProtocolErrorCode, WebSocketCloseConstants::kProtocolErrorReservedBitUsed, _rxbuf.size()); return; } // // Calculate payload length: // 0-125 mean the payload is that long. // 126 means that the following two bytes indicate the length, // 127 means the next 8 bytes indicate the length. // int i = 0; if (ws.N0 < 126) { ws.N = ws.N0; i = 2; } else if (ws.N0 == 126) { ws.N = 0; ws.N |= ((uint64_t) data[2]) << 8; ws.N |= ((uint64_t) data[3]) << 0; i = 4; } else if (ws.N0 == 127) { ws.N = 0; ws.N |= ((uint64_t) data[2]) << 56; ws.N |= ((uint64_t) data[3]) << 48; ws.N |= ((uint64_t) data[4]) << 40; ws.N |= ((uint64_t) data[5]) << 32; ws.N |= ((uint64_t) data[6]) << 24; ws.N |= ((uint64_t) data[7]) << 16; ws.N |= ((uint64_t) data[8]) << 8; ws.N |= ((uint64_t) data[9]) << 0; i = 10; } else { // invalid payload length according to the spec. bail out return; } if (ws.mask) { ws.masking_key[0] = ((uint8_t) data[i + 0]) << 0; ws.masking_key[1] = ((uint8_t) data[i + 1]) << 0; ws.masking_key[2] = ((uint8_t) data[i + 2]) << 0; ws.masking_key[3] = ((uint8_t) data[i + 3]) << 0; } else { ws.masking_key[0] = 0; ws.masking_key[1] = 0; ws.masking_key[2] = 0; ws.masking_key[3] = 0; } // Prevent integer overflow in the next conditional const uint64_t maxFrameSize(1ULL << 63); if (ws.N > maxFrameSize) { return; } if (_rxbuf.size() < ws.header_size + ws.N) { return; /* Need: ws.header_size+ws.N - _rxbuf.size() */ } if (!ws.fin && (ws.opcode == wsheader_type::PING || ws.opcode == wsheader_type::PONG || ws.opcode == wsheader_type::CLOSE)) { // Control messages should not be fragmented close(WebSocketCloseConstants::kProtocolErrorCode, WebSocketCloseConstants::kProtocolErrorCodeControlMessageFragmented); return; } unmaskReceiveBuffer(ws); std::string frameData(_rxbuf.begin() + ws.header_size, _rxbuf.begin() + ws.header_size + (size_t) ws.N); // We got a whole message, now do something with it: if (ws.opcode == wsheader_type::TEXT_FRAME || ws.opcode == wsheader_type::BINARY_FRAME || ws.opcode == wsheader_type::CONTINUATION) { if (ws.opcode != wsheader_type::CONTINUATION) { _fragmentedMessageKind = (ws.opcode == wsheader_type::TEXT_FRAME) ? MessageKind::MSG_TEXT : MessageKind::MSG_BINARY; _receivedMessageCompressed = _enablePerMessageDeflate && ws.rsv1; // Continuation message needs to follow a non-fin TEXT or BINARY message if (!_chunks.empty()) { close(WebSocketCloseConstants::kProtocolErrorCode, WebSocketCloseConstants::kProtocolErrorCodeDataOpcodeOutOfSequence); } } else if (_chunks.empty()) { // Continuation message need to follow a non-fin TEXT or BINARY message close( WebSocketCloseConstants::kProtocolErrorCode, WebSocketCloseConstants::kProtocolErrorCodeContinuationOpCodeOutOfSequence); } // // Usual case. Small unfragmented messages // if (ws.fin && _chunks.empty()) { emitMessage(_fragmentedMessageKind, frameData, _receivedMessageCompressed, onMessageCallback); _receivedMessageCompressed = false; } else { // // Add intermediary message to our chunk list. // We use a chunk list instead of a big buffer because resizing // large buffer can be very costly when we need to re-allocate // the internal buffer which is slow and can let the internal OS // receive buffer fill out. // _chunks.emplace_back(frameData); if (ws.fin) { emitMessage(_fragmentedMessageKind, getMergedChunks(), _receivedMessageCompressed, onMessageCallback); _chunks.clear(); _receivedMessageCompressed = false; } else { emitMessage(MessageKind::FRAGMENT, std::string(), false, onMessageCallback); } } } else if (ws.opcode == wsheader_type::PING) { // too large if (frameData.size() > 125) { // Unexpected frame type close(WebSocketCloseConstants::kProtocolErrorCode, WebSocketCloseConstants::kProtocolErrorPingPayloadOversized); return; } if (_enablePong) { // Reply back right away bool compress = false; sendData(wsheader_type::PONG, frameData, compress); } emitMessage(MessageKind::PING, frameData, false, onMessageCallback); } else if (ws.opcode == wsheader_type::PONG) { _pongReceived = true; emitMessage(MessageKind::PONG, frameData, false, onMessageCallback); } else if (ws.opcode == wsheader_type::CLOSE) { std::string reason; uint16_t code = 0; if (ws.N >= 2) { // Extract the close code first, available as the first 2 bytes code |= ((uint64_t) _rxbuf[ws.header_size]) << 8; code |= ((uint64_t) _rxbuf[ws.header_size + 1]) << 0; // Get the reason. if (ws.N > 2) { reason = frameData.substr(2, frameData.size()); } // Validate that the reason is proper utf-8. Autobahn 7.5.1 if (!validateUtf8(reason)) { code = WebSocketCloseConstants::kInvalidFramePayloadData; reason = WebSocketCloseConstants::kInvalidFramePayloadDataMessage; } // // Validate close codes. Autobahn 7.9.* // 1014, 1015 are debattable. The firefox MSDN has a description for them. // Full list of status code and status range is defined in the dedicated // RFC section at https://tools.ietf.org/html/rfc6455#page-45 // if (code < 1000 || code == 1004 || code == 1006 || (code > 1013 && code < 3000)) { // build up an error message containing the bad error code std::stringstream ss; ss << WebSocketCloseConstants::kInvalidCloseCodeMessage << ": " << code; reason = ss.str(); code = WebSocketCloseConstants::kProtocolErrorCode; } } else { // no close code received code = WebSocketCloseConstants::kNoStatusCodeErrorCode; reason = WebSocketCloseConstants::kNoStatusCodeErrorMessage; } // We receive a CLOSE frame from remote and are NOT the ones who triggered the close if (_readyState != ReadyState::CLOSING) { // send back the CLOSE frame sendCloseFrame(code, reason); wakeUpFromPoll(SelectInterrupt::kCloseRequest); bool remote = true; closeSocketAndSwitchToClosedState(code, reason, _rxbuf.size(), remote); } else { // we got the CLOSE frame answer from our close, so we can close the connection // if the code/reason are the same bool identicalReason = _closeCode == code && getCloseReason() == reason; if (identicalReason) { bool remote = false; closeSocketAndSwitchToClosedState(code, reason, _rxbuf.size(), remote); } } } else { // Unexpected frame type close(WebSocketCloseConstants::kProtocolErrorCode, WebSocketCloseConstants::kProtocolErrorMessage, _rxbuf.size()); } // Erase the message that has been processed from the input/read buffer _rxbuf.erase(_rxbuf.begin(), _rxbuf.begin() + ws.header_size + (size_t) ws.N); } // if an abnormal closure was raised in poll, and nothing else triggered a CLOSED state in // the received and processed data then close the connection if (pollResult != PollResult::Succeeded) { _rxbuf.clear(); // if we previously closed the connection (CLOSING state), then set state to CLOSED // (code/reason were set before) if (_readyState == ReadyState::CLOSING) { closeSocket(); setReadyState(ReadyState::CLOSED); } // if we weren't closing, then close using abnormal close code and message else if (_readyState != ReadyState::CLOSED) { closeSocketAndSwitchToClosedState(WebSocketCloseConstants::kAbnormalCloseCode, WebSocketCloseConstants::kAbnormalCloseMessage, 0, false); } } } std::string WebSocketTransport::getMergedChunks() const { size_t length = 0; for (auto&& chunk : _chunks) { length += chunk.size(); } std::string msg; msg.reserve(length); for (auto&& chunk : _chunks) { msg += chunk; } return msg; } void WebSocketTransport::emitMessage(MessageKind messageKind, const std::string& message, bool compressedMessage, const OnMessageCallback& onMessageCallback) { size_t wireSize = message.size(); // When the RSV1 bit is 1 it means the message is compressed if (compressedMessage && messageKind != MessageKind::FRAGMENT) { bool success = _perMessageDeflate->decompress(message, _decompressedMessage); if (messageKind == MessageKind::MSG_TEXT && !validateUtf8(_decompressedMessage)) { close(WebSocketCloseConstants::kInvalidFramePayloadData, WebSocketCloseConstants::kInvalidFramePayloadDataMessage); } else { onMessageCallback(_decompressedMessage, wireSize, !success, messageKind); } } else { if (messageKind == MessageKind::MSG_TEXT && !validateUtf8(message)) { close(WebSocketCloseConstants::kInvalidFramePayloadData, WebSocketCloseConstants::kInvalidFramePayloadDataMessage); } else { onMessageCallback(message, wireSize, false, messageKind); } } } unsigned WebSocketTransport::getRandomUnsigned() { auto now = std::chrono::system_clock::now(); auto seconds = std::chrono::duration_cast(now.time_since_epoch()).count(); return static_cast(seconds); } WebSocketSendInfo WebSocketTransport::sendData(wsheader_type::opcode_type type, const IXWebSocketSendData& message, bool compress, const OnProgressCallback& onProgressCallback) { if (_readyState != ReadyState::OPEN && _readyState != ReadyState::CLOSING) { return WebSocketSendInfo(false); } size_t payloadSize = message.size(); size_t wireSize = message.size(); bool compressionError = false; auto message_begin = message.cbegin(); auto message_end = message.cend(); if (compress) { if (!_perMessageDeflate->compress(message, _compressedMessage)) { bool success = false; compressionError = true; payloadSize = 0; wireSize = 0; return WebSocketSendInfo(success, compressionError, payloadSize, wireSize); } compressionError = false; wireSize = _compressedMessage.size(); IXWebSocketSendData compressedSendData(_compressedMessage); message_begin = compressedSendData.cbegin(); message_end = compressedSendData.cend(); } { std::lock_guard lock(_txbufMutex); _txbuf.reserve(wireSize); } bool success = true; // Common case for most message. No fragmentation required. if (wireSize < kChunkSize) { success = sendFragment(type, true, message_begin, message_end, compress); if (onProgressCallback) { onProgressCallback(0, 1); } } else { // // Large messages need to be fragmented // // Rules: // First message needs to specify a proper type (BINARY or TEXT) // Intermediary and last messages need to be of type CONTINUATION // Last message must set the fin byte. // auto steps = wireSize / kChunkSize; auto begin = message_begin; auto end = message_end; for (uint64_t i = 0; i < steps; ++i) { bool firstStep = i == 0; bool lastStep = (i + 1) == steps; bool fin = lastStep; end = begin + kChunkSize; if (lastStep) { end = message_end; } auto opcodeType = type; if (!firstStep) { opcodeType = wsheader_type::CONTINUATION; } // Send message if (!sendFragment(opcodeType, fin, begin, end, compress)) { return WebSocketSendInfo(false); } if (onProgressCallback && !onProgressCallback((int) i, (int) steps)) { break; } begin += kChunkSize; } } // Request to flush the send buffer on the background thread if it isn't empty if (!isSendBufferEmpty()) { wakeUpFromPoll(SelectInterrupt::kSendRequest); // FIXME: we should have a timeout when sending large messages: see #131 if (_blockingSend && !flushSendBuffer()) { success = false; } } return WebSocketSendInfo(success, compressionError, payloadSize, wireSize); } template bool WebSocketTransport::sendFragment(wsheader_type::opcode_type type, bool fin, Iterator message_begin, Iterator message_end, bool compress) { uint64_t message_size = static_cast(message_end - message_begin); unsigned x = getRandomUnsigned(); uint8_t masking_key[4] = {}; masking_key[0] = (x >> 24); masking_key[1] = (x >> 16) & 0xff; masking_key[2] = (x >> 8) & 0xff; masking_key[3] = (x) &0xff; std::vector header; header.assign(2 + (message_size >= 126 ? 2 : 0) + (message_size >= 65536 ? 6 : 0) + (_useMask ? 4 : 0), 0); header[0] = type; // The fin bit indicate that this is the last fragment. Fin is French for end. if (fin) { header[0] |= 0x80; } // The rsv1 bit indicate that the frame is compressed // continuation opcodes should not set it. Autobahn 12.2.10 and others 12.X if (compress && type != wsheader_type::CONTINUATION) { header[0] |= 0x40; } if (message_size < 126) { header[1] = (message_size & 0xff) | (_useMask ? 0x80 : 0); if (_useMask) { header[2] = masking_key[0]; header[3] = masking_key[1]; header[4] = masking_key[2]; header[5] = masking_key[3]; } } else if (message_size < 65536) { header[1] = 126 | (_useMask ? 0x80 : 0); header[2] = (message_size >> 8) & 0xff; header[3] = (message_size >> 0) & 0xff; if (_useMask) { header[4] = masking_key[0]; header[5] = masking_key[1]; header[6] = masking_key[2]; header[7] = masking_key[3]; } } else { // TODO: run coverage testing here header[1] = 127 | (_useMask ? 0x80 : 0); header[2] = (message_size >> 56) & 0xff; header[3] = (message_size >> 48) & 0xff; header[4] = (message_size >> 40) & 0xff; header[5] = (message_size >> 32) & 0xff; header[6] = (message_size >> 24) & 0xff; header[7] = (message_size >> 16) & 0xff; header[8] = (message_size >> 8) & 0xff; header[9] = (message_size >> 0) & 0xff; if (_useMask) { header[10] = masking_key[0]; header[11] = masking_key[1]; header[12] = masking_key[2]; header[13] = masking_key[3]; } } // _txbuf will keep growing until it can be transmitted over the socket: appendToSendBuffer(header, message_begin, message_end, message_size, masking_key); // Now actually send this data return sendOnSocket(); } WebSocketSendInfo WebSocketTransport::sendPing(const IXWebSocketSendData& message) { bool compress = false; WebSocketSendInfo info = sendData(wsheader_type::PING, message, compress); if (info.success) { std::lock_guard lck(_lastSendPingTimePointMutex); _lastSendPingTimePoint = std::chrono::steady_clock::now(); } return info; } WebSocketSendInfo WebSocketTransport::sendBinary(const IXWebSocketSendData& message, const OnProgressCallback& onProgressCallback) { return sendData( wsheader_type::BINARY_FRAME, message, _enablePerMessageDeflate, onProgressCallback); } WebSocketSendInfo WebSocketTransport::sendText(const IXWebSocketSendData& message, const OnProgressCallback& onProgressCallback) { return sendData( wsheader_type::TEXT_FRAME, message, _enablePerMessageDeflate, onProgressCallback); } bool WebSocketTransport::sendOnSocket() { std::lock_guard lock(_txbufMutex); while (_txbuf.size()) { ssize_t ret = 0; { std::lock_guard lock(_socketMutex); ret = _socket->send((char*) &_txbuf[0], _txbuf.size()); } if (ret < 0 && Socket::isWaitNeeded()) { break; } else if (ret <= 0) { closeSocket(); setReadyState(ReadyState::CLOSED); return false; } else { _txbuf.erase(_txbuf.begin(), _txbuf.begin() + ret); } } return true; } bool WebSocketTransport::receiveFromSocket() { while (true) { ssize_t ret = _socket->recv((char*) &_readbuf[0], _readbuf.size()); if (ret < 0 && Socket::isWaitNeeded()) { break; } else if (ret <= 0) { // if there are received data pending to be processed, then delay the abnormal // closure to after dispatch (other close code/reason could be read from the // buffer) closeSocket(); return false; } else { _rxbuf.insert(_rxbuf.end(), _readbuf.begin(), _readbuf.begin() + ret); } } return true; } void WebSocketTransport::sendCloseFrame(uint16_t code, const std::string& reason) { bool compress = false; // if a status is set/was read if (code != WebSocketCloseConstants::kNoStatusCodeErrorCode) { // See list of close events here: // https://developer.mozilla.org/en-US/docs/Web/API/CloseEvent std::string closure {(char) (code >> 8), (char) (code & 0xff)}; // copy reason after code closure.append(reason); sendData(wsheader_type::CLOSE, closure, compress); } else { // no close code/reason set sendData(wsheader_type::CLOSE, std::string(""), compress); } } void WebSocketTransport::closeSocket() { std::lock_guard lock(_socketMutex); _socket->close(); } bool WebSocketTransport::wakeUpFromPoll(uint64_t wakeUpCode) { std::lock_guard lock(_socketMutex); return _socket->wakeUpFromPoll(wakeUpCode); } void WebSocketTransport::closeSocketAndSwitchToClosedState(uint16_t code, const std::string& reason, size_t closeWireSize, bool remote) { closeSocket(); setCloseReason(reason); _closeCode = code; _closeWireSize = closeWireSize; _closeRemote = remote; setReadyState(ReadyState::CLOSED); _requestInitCancellation = false; } void WebSocketTransport::close(uint16_t code, const std::string& reason, size_t closeWireSize, bool remote) { _requestInitCancellation = true; if (_readyState == ReadyState::CLOSING || _readyState == ReadyState::CLOSED) return; if (closeWireSize == 0) { closeWireSize = reason.size(); } setCloseReason(reason); _closeCode = code; _closeWireSize = closeWireSize; _closeRemote = remote; { std::lock_guard lock(_closingTimePointMutex); _closingTimePoint = std::chrono::steady_clock::now(); } setReadyState(ReadyState::CLOSING); sendCloseFrame(code, reason); // wake up the poll, but do not close yet wakeUpFromPoll(SelectInterrupt::kSendRequest); } size_t WebSocketTransport::bufferedAmount() const { std::lock_guard lock(_txbufMutex); return _txbuf.size(); } bool WebSocketTransport::flushSendBuffer() { while (!isSendBufferEmpty() && !_requestInitCancellation) { // Wait with a 10ms timeout until the socket is ready to write. // This way we are not busy looping PollResultType result = _socket->isReadyToWrite(10); if (result == PollResultType::Error) { closeSocket(); setReadyState(ReadyState::CLOSED); return false; } else if (result == PollResultType::ReadyForWrite) { if (!sendOnSocket()) { return false; } } } return true; } void WebSocketTransport::setCloseReason(const std::string& reason) { std::lock_guard lock(_closeReasonMutex); _closeReason = reason; } const std::string& WebSocketTransport::getCloseReason() const { std::lock_guard lock(_closeReasonMutex); return _closeReason; } } // namespace ix