/* * The MIT License (MIT) * * Copyright (c) 2012, 2013 * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * IXWebSocketTransport.cpp * Author: Benjamin Sergeant * Copyright (c) 2017-2019 Machine Zone, Inc. All rights reserved. */ // // Adapted from https://github.com/dhbaird/easywsclient // #include "IXWebSocketTransport.h" #include "IXWebSocketHandshake.h" #include "IXWebSocketHttpHeaders.h" #include "IXUrlParser.h" #include "IXSocketFactory.h" #include #include #include #include #include #include #include #include #include namespace { int greatestCommonDivisor(int a, int b) { while (b != 0) { int t = b; b = a % b; a = t; } return a; } } namespace ix { const std::string WebSocketTransport::kPingMessage("ixwebsocket::heartbeat"); const int WebSocketTransport::kDefaultPingIntervalSecs(-1); const int WebSocketTransport::kDefaultPingTimeoutSecs(-1); const bool WebSocketTransport::kDefaultEnablePong(true); const int WebSocketTransport::kClosingMaximumWaitingDelayInMs(300); constexpr size_t WebSocketTransport::kChunkSize; WebSocketTransport::WebSocketTransport() : _useMask(true), _readyState(ReadyState::CLOSED), _closeCode(WebSocketCloseConstants::kInternalErrorCode), _closeReason(WebSocketCloseConstants::kInternalErrorMessage), _closeWireSize(0), _closeRemote(false), _enablePerMessageDeflate(false), _requestInitCancellation(false), _closingTimePoint(std::chrono::steady_clock::now()), _enablePong(kDefaultEnablePong), _pingIntervalSecs(kDefaultPingIntervalSecs), _pingTimeoutSecs(kDefaultPingTimeoutSecs), _pingIntervalOrTimeoutGCDSecs(-1), _nextGCDTimePoint(std::chrono::steady_clock::now()), _lastSendPingTimePoint(std::chrono::steady_clock::now()), _lastReceivePongTimePoint(std::chrono::steady_clock::now()) { _readbuf.resize(kChunkSize); } WebSocketTransport::~WebSocketTransport() { ; } void WebSocketTransport::configure(const WebSocketPerMessageDeflateOptions& perMessageDeflateOptions, bool enablePong, int pingIntervalSecs, int pingTimeoutSecs) { _perMessageDeflateOptions = perMessageDeflateOptions; _enablePerMessageDeflate = _perMessageDeflateOptions.enabled(); _enablePong = enablePong; _pingIntervalSecs = pingIntervalSecs; _pingTimeoutSecs = pingTimeoutSecs; if (pingIntervalSecs > 0 && pingTimeoutSecs > 0) { _pingIntervalOrTimeoutGCDSecs = greatestCommonDivisor(pingIntervalSecs, pingTimeoutSecs); } else if (_pingTimeoutSecs > 0) { _pingIntervalOrTimeoutGCDSecs = pingTimeoutSecs; } else { _pingIntervalOrTimeoutGCDSecs = pingIntervalSecs; } } // Client WebSocketInitResult WebSocketTransport::connectToUrl(const std::string& url, int timeoutSecs) { std::lock_guard lock(_socketMutex); std::string protocol, host, path, query; int port; if (!UrlParser::parse(url, protocol, host, path, query, port)) { return WebSocketInitResult(false, 0, std::string("Could not parse URL ") + url); } std::string errorMsg; bool tls = protocol == "wss"; _socket = createSocket(tls, errorMsg); if (!_socket) { return WebSocketInitResult(false, 0, errorMsg); } WebSocketHandshake webSocketHandshake(_requestInitCancellation, _socket, _perMessageDeflate, _perMessageDeflateOptions, _enablePerMessageDeflate); auto result = webSocketHandshake.clientHandshake(url, host, path, port, timeoutSecs); if (result.success) { setReadyState(ReadyState::OPEN); } return result; } // Server WebSocketInitResult WebSocketTransport::connectToSocket(int fd, int timeoutSecs) { std::lock_guard lock(_socketMutex); // Server should not mask the data it sends to the client _useMask = false; std::string errorMsg; _socket = createSocket(fd, errorMsg); if (!_socket) { return WebSocketInitResult(false, 0, errorMsg); } WebSocketHandshake webSocketHandshake(_requestInitCancellation, _socket, _perMessageDeflate, _perMessageDeflateOptions, _enablePerMessageDeflate); auto result = webSocketHandshake.serverHandshake(fd, timeoutSecs); if (result.success) { setReadyState(ReadyState::OPEN); } return result; } WebSocketTransport::ReadyState WebSocketTransport::getReadyState() const { return _readyState; } void WebSocketTransport::setReadyState(ReadyState readyState) { // No state change, return if (_readyState == readyState) return; if (readyState == ReadyState::CLOSED) { std::lock_guard lock(_closeDataMutex); _onCloseCallback(_closeCode, _closeReason, _closeWireSize, _closeRemote); _closeCode = WebSocketCloseConstants::kInternalErrorCode; _closeReason = WebSocketCloseConstants::kInternalErrorMessage; _closeWireSize = 0; _closeRemote = false; } else if (readyState == ReadyState::OPEN) { initTimePointsAndGCDAfterConnect(); } _readyState = readyState; } void WebSocketTransport::setOnCloseCallback(const OnCloseCallback& onCloseCallback) { _onCloseCallback = onCloseCallback; } void WebSocketTransport::initTimePointsAndGCDAfterConnect() { { std::lock_guard lock(_lastSendPingTimePointMutex); _lastSendPingTimePoint = std::chrono::steady_clock::now(); } { std::lock_guard lock(_lastReceivePongTimePointMutex); _lastReceivePongTimePoint = std::chrono::steady_clock::now(); } if (_pingIntervalOrTimeoutGCDSecs > 0) { _nextGCDTimePoint = std::chrono::steady_clock::now() + std::chrono::seconds(_pingIntervalOrTimeoutGCDSecs); } } // Only consider send PING time points for that computation. bool WebSocketTransport::pingIntervalExceeded() { if (_pingIntervalSecs <= 0) return false; std::lock_guard lock(_lastSendPingTimePointMutex); auto now = std::chrono::steady_clock::now(); return now - _lastSendPingTimePoint > std::chrono::seconds(_pingIntervalSecs); } bool WebSocketTransport::pingTimeoutExceeded() { if (_pingTimeoutSecs <= 0) return false; std::lock_guard lock(_lastReceivePongTimePointMutex); auto now = std::chrono::steady_clock::now(); return now - _lastReceivePongTimePoint > std::chrono::seconds(_pingTimeoutSecs); } bool WebSocketTransport::closingDelayExceeded() { std::lock_guard lock(_closingTimePointMutex); auto now = std::chrono::steady_clock::now(); return now - _closingTimePoint > std::chrono::milliseconds(kClosingMaximumWaitingDelayInMs); } WebSocketTransport::PollResult WebSocketTransport::poll() { if (_readyState == ReadyState::OPEN) { // if (1) ping timeout is enabled and (2) duration since last received // ping response (PONG) exceeds the maximum delay, then close the connection if (pingTimeoutExceeded()) { close(WebSocketCloseConstants::kInternalErrorCode, WebSocketCloseConstants::kPingTimeoutMessage); } // If ping is enabled and no ping has been sent for a duration // exceeding our ping interval, send a ping to the server. else if (pingIntervalExceeded()) { std::stringstream ss; ss << kPingMessage << "::" << _pingIntervalSecs << "s"; sendPing(ss.str()); } } // No timeout if state is not OPEN, otherwise computed // pingIntervalOrTimeoutGCD (equals to -1 if no ping and no ping timeout are set) int lastingTimeoutDelayInMs = (_readyState != ReadyState::OPEN) ? 0 : _pingIntervalOrTimeoutGCDSecs; if (_pingIntervalOrTimeoutGCDSecs > 0) { // compute lasting delay to wait for next ping / timeout, if at least one set auto now = std::chrono::steady_clock::now(); if (now >= _nextGCDTimePoint) { _nextGCDTimePoint = now + std::chrono::seconds(_pingIntervalOrTimeoutGCDSecs); lastingTimeoutDelayInMs = _pingIntervalOrTimeoutGCDSecs * 1000; } else { lastingTimeoutDelayInMs = (int)std::chrono::duration_cast(_nextGCDTimePoint - now).count(); } } #ifdef _WIN32 // Windows does not have select interrupt capabilities, so wait with a small timeout if (lastingTimeoutDelayInMs <= 0) { lastingTimeoutDelayInMs = 20; } #endif // If we are requesting a cancellation, pass in a positive and small timeout // to never poll forever without a timeout. if (_requestInitCancellation) { lastingTimeoutDelayInMs = 100; } // poll the socket PollResultType pollResult = _socket->poll(lastingTimeoutDelayInMs); // Make sure we send all the buffered data // there can be a lot of it for large messages. if (pollResult == PollResultType::SendRequest) { while (!isSendBufferEmpty() && !_requestInitCancellation) { // Wait with a 10ms timeout until the socket is ready to write. // This way we are not busy looping PollResultType result = _socket->isReadyToWrite(10); if (result == PollResultType::Error) { closeSocket(); setReadyState(ReadyState::CLOSED); break; } else if (result == PollResultType::ReadyForWrite) { sendOnSocket(); } } } else if (pollResult == PollResultType::ReadyForRead) { while (true) { ssize_t ret = _socket->recv((char*)&_readbuf[0], _readbuf.size()); if (ret < 0 && Socket::isWaitNeeded()) { break; } else if (ret <= 0) { // if there are received data pending to be processed, then delay the abnormal closure // to after dispatch (other close code/reason could be read from the buffer) closeSocket(); return PollResult::AbnormalClose; } else { _rxbuf.insert(_rxbuf.end(), _readbuf.begin(), _readbuf.begin() + ret); } } } else if (pollResult == PollResultType::Error) { closeSocket(); } else if (pollResult == PollResultType::CloseRequest) { closeSocket(); } if (_readyState == ReadyState::CLOSING && closingDelayExceeded()) { _rxbuf.clear(); // close code and reason were set when calling close() closeSocket(); setReadyState(ReadyState::CLOSED); } return PollResult::Succeeded; } bool WebSocketTransport::isSendBufferEmpty() const { std::lock_guard lock(_txbufMutex); return _txbuf.empty(); } void WebSocketTransport::appendToSendBuffer(const std::vector& header, std::string::const_iterator begin, std::string::const_iterator end, uint64_t message_size, uint8_t masking_key[4]) { std::lock_guard lock(_txbufMutex); _txbuf.insert(_txbuf.end(), header.begin(), header.end()); _txbuf.insert(_txbuf.end(), begin, end); if (_useMask) { for (size_t i = 0; i != (size_t) message_size; ++i) { *(_txbuf.end() - (size_t) message_size + i) ^= masking_key[i&0x3]; } } } void WebSocketTransport::unmaskReceiveBuffer(const wsheader_type& ws) { if (ws.mask) { for (size_t j = 0; j != ws.N; ++j) { _rxbuf[j+ws.header_size] ^= ws.masking_key[j&0x3]; } } } // // http://tools.ietf.org/html/rfc6455#section-5.2 Base Framing Protocol // // 0 1 2 3 // 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 // +-+-+-+-+-------+-+-------------+-------------------------------+ // |F|R|R|R| opcode|M| Payload len | Extended payload length | // |I|S|S|S| (4) |A| (7) | (16/64) | // |N|V|V|V| |S| | (if payload len==126/127) | // | |1|2|3| |K| | | // +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - + // | Extended payload length continued, if payload len == 127 | // + - - - - - - - - - - - - - - - +-------------------------------+ // | |Masking-key, if MASK set to 1 | // +-------------------------------+-------------------------------+ // | Masking-key (continued) | Payload Data | // +-------------------------------- - - - - - - - - - - - - - - - + // : Payload Data continued ... : // + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - + // | Payload Data continued ... | // +---------------------------------------------------------------+ // void WebSocketTransport::dispatch(WebSocketTransport::PollResult pollResult, const OnMessageCallback& onMessageCallback) { while (true) { wsheader_type ws; if (_rxbuf.size() < 2) break; /* Need at least 2 */ const uint8_t * data = (uint8_t *) &_rxbuf[0]; // peek, but don't consume ws.fin = (data[0] & 0x80) == 0x80; ws.rsv1 = (data[0] & 0x40) == 0x40; ws.opcode = (wsheader_type::opcode_type) (data[0] & 0x0f); ws.mask = (data[1] & 0x80) == 0x80; ws.N0 = (data[1] & 0x7f); ws.header_size = 2 + (ws.N0 == 126? 2 : 0) + (ws.N0 == 127? 8 : 0) + (ws.mask? 4 : 0); if (_rxbuf.size() < ws.header_size) break; /* Need: ws.header_size - _rxbuf.size() */ // // Calculate payload length: // 0-125 mean the payload is that long. // 126 means that the following two bytes indicate the length, // 127 means the next 8 bytes indicate the length. // int i = 0; if (ws.N0 < 126) { ws.N = ws.N0; i = 2; } else if (ws.N0 == 126) { ws.N = 0; ws.N |= ((uint64_t) data[2]) << 8; ws.N |= ((uint64_t) data[3]) << 0; i = 4; } else if (ws.N0 == 127) { ws.N = 0; ws.N |= ((uint64_t) data[2]) << 56; ws.N |= ((uint64_t) data[3]) << 48; ws.N |= ((uint64_t) data[4]) << 40; ws.N |= ((uint64_t) data[5]) << 32; ws.N |= ((uint64_t) data[6]) << 24; ws.N |= ((uint64_t) data[7]) << 16; ws.N |= ((uint64_t) data[8]) << 8; ws.N |= ((uint64_t) data[9]) << 0; i = 10; } else { // invalid payload length according to the spec. bail out return; } if (ws.mask) { ws.masking_key[0] = ((uint8_t) data[i+0]) << 0; ws.masking_key[1] = ((uint8_t) data[i+1]) << 0; ws.masking_key[2] = ((uint8_t) data[i+2]) << 0; ws.masking_key[3] = ((uint8_t) data[i+3]) << 0; } else { ws.masking_key[0] = 0; ws.masking_key[1] = 0; ws.masking_key[2] = 0; ws.masking_key[3] = 0; } if (_rxbuf.size() < ws.header_size+ws.N) { return; /* Need: ws.header_size+ws.N - _rxbuf.size() */ } // We got a whole message, now do something with it: if ( ws.opcode == wsheader_type::TEXT_FRAME || ws.opcode == wsheader_type::BINARY_FRAME || ws.opcode == wsheader_type::CONTINUATION ) { unmaskReceiveBuffer(ws); // // Usual case. Small unfragmented messages // if (ws.fin && _chunks.empty()) { emitMessage(MessageKind::MSG, std::string(_rxbuf.begin()+ws.header_size, _rxbuf.begin()+ws.header_size+(size_t) ws.N), ws, onMessageCallback); } else { // // Add intermediary message to our chunk list. // We use a chunk list instead of a big buffer because resizing // large buffer can be very costly when we need to re-allocate // the internal buffer which is slow and can let the internal OS // receive buffer fill out. // _chunks.emplace_back( std::vector(_rxbuf.begin()+ws.header_size, _rxbuf.begin()+ws.header_size+(size_t)ws.N)); if (ws.fin) { emitMessage(MessageKind::MSG, getMergedChunks(), ws, onMessageCallback); _chunks.clear(); } else { emitMessage(MessageKind::FRAGMENT, std::string(), ws, onMessageCallback); } } } else if (ws.opcode == wsheader_type::PING) { unmaskReceiveBuffer(ws); std::string pingData(_rxbuf.begin()+ws.header_size, _rxbuf.begin()+ws.header_size + (size_t) ws.N); if (_enablePong) { // Reply back right away bool compress = false; sendData(wsheader_type::PONG, pingData, compress); } emitMessage(MessageKind::PING, pingData, ws, onMessageCallback); } else if (ws.opcode == wsheader_type::PONG) { unmaskReceiveBuffer(ws); std::string pongData(_rxbuf.begin()+ws.header_size, _rxbuf.begin()+ws.header_size + (size_t) ws.N); std::lock_guard lck(_lastReceivePongTimePointMutex); _lastReceivePongTimePoint = std::chrono::steady_clock::now(); emitMessage(MessageKind::PONG, pongData, ws, onMessageCallback); } else if (ws.opcode == wsheader_type::CLOSE) { std::string reason; uint16_t code = 0; unmaskReceiveBuffer(ws); if (ws.N >= 2) { // Extract the close code first, available as the first 2 bytes code |= ((uint64_t) _rxbuf[ws.header_size]) << 8; code |= ((uint64_t) _rxbuf[ws.header_size+1]) << 0; // Get the reason. if (ws.N > 2) { reason.assign(_rxbuf.begin()+ws.header_size + 2, _rxbuf.begin()+ws.header_size + (size_t) ws.N); } } else { // no close code received code = WebSocketCloseConstants::kNoStatusCodeErrorCode; reason = WebSocketCloseConstants::kNoStatusCodeErrorMessage; } // We receive a CLOSE frame from remote and are NOT the ones who triggered the close if (_readyState != ReadyState::CLOSING) { // send back the CLOSE frame sendCloseFrame(code, reason); _socket->wakeUpFromPoll(Socket::kCloseRequest); bool remote = true; closeSocketAndSwitchToClosedState(code, reason, _rxbuf.size(), remote); } else { // we got the CLOSE frame answer from our close, so we can close the connection if // the code/reason are the same bool identicalReason; { std::lock_guard lock(_closeDataMutex); identicalReason = _closeCode == code && _closeReason == reason; } if (identicalReason) { bool remote = false; closeSocketAndSwitchToClosedState(code, reason, _rxbuf.size(), remote); } } } else { // Unexpected frame type close(WebSocketCloseConstants::kProtocolErrorCode, WebSocketCloseConstants::kProtocolErrorMessage, _rxbuf.size()); } // Erase the message that has been processed from the input/read buffer _rxbuf.erase(_rxbuf.begin(), _rxbuf.begin() + ws.header_size + (size_t) ws.N); } // if an abnormal closure was raised in poll, and nothing else triggered a CLOSED state in // the received and processed data then close the connection if (pollResult == PollResult::AbnormalClose) { _rxbuf.clear(); // if we previously closed the connection (CLOSING state), then set state to CLOSED (code/reason were set before) if (_readyState == ReadyState::CLOSING) { closeSocket(); setReadyState(ReadyState::CLOSED); } // if we weren't closing, then close using abnormal close code and message else if (_readyState != ReadyState::CLOSED) { closeSocketAndSwitchToClosedState(WebSocketCloseConstants::kAbnormalCloseCode, WebSocketCloseConstants::kAbnormalCloseMessage, 0, false); } } } std::string WebSocketTransport::getMergedChunks() const { size_t length = 0; for (auto&& chunk : _chunks) { length += chunk.size(); } std::string msg; msg.reserve(length); for (auto&& chunk : _chunks) { std::string str(chunk.begin(), chunk.end()); msg += str; } return msg; } void WebSocketTransport::emitMessage(MessageKind messageKind, const std::string& message, const wsheader_type& ws, const OnMessageCallback& onMessageCallback) { size_t wireSize = message.size(); // When the RSV1 bit is 1 it means the message is compressed if (_enablePerMessageDeflate && ws.rsv1 && messageKind != MessageKind::FRAGMENT) { std::string decompressedMessage; bool success = _perMessageDeflate.decompress(message, decompressedMessage); onMessageCallback(decompressedMessage, wireSize, !success, messageKind); } else { onMessageCallback(message, wireSize, false, messageKind); } } unsigned WebSocketTransport::getRandomUnsigned() { auto now = std::chrono::system_clock::now(); auto seconds = std::chrono::duration_cast( now.time_since_epoch()).count(); return static_cast(seconds); } WebSocketSendInfo WebSocketTransport::sendData( wsheader_type::opcode_type type, const std::string& message, bool compress, const OnProgressCallback& onProgressCallback) { if (_readyState != ReadyState::OPEN && _readyState != ReadyState::CLOSING) { return WebSocketSendInfo(); } size_t payloadSize = message.size(); size_t wireSize = message.size(); std::string compressedMessage; bool compressionError = false; std::string::const_iterator message_begin = message.begin(); std::string::const_iterator message_end = message.end(); if (compress) { if (!_perMessageDeflate.compress(message, compressedMessage)) { bool success = false; compressionError = true; payloadSize = 0; wireSize = 0; return WebSocketSendInfo(success, compressionError, payloadSize, wireSize); } compressionError = false; wireSize = compressedMessage.size(); message_begin = compressedMessage.begin(); message_end = compressedMessage.end(); } // Common case for most message. No fragmentation required. if (wireSize < kChunkSize) { sendFragment(type, true, message_begin, message_end, compress); } else { // // Large messages need to be fragmented // // Rules: // First message needs to specify a proper type (BINARY or TEXT) // Intermediary and last messages need to be of type CONTINUATION // Last message must set the fin byte. // auto steps = wireSize / kChunkSize; std::string::const_iterator begin = message_begin; std::string::const_iterator end = message_end; for (uint64_t i = 0 ; i < steps; ++i) { bool firstStep = i == 0; bool lastStep = (i+1) == steps; bool fin = lastStep; end = begin + kChunkSize; if (lastStep) { end = message_end; } auto opcodeType = type; if (!firstStep) { opcodeType = wsheader_type::CONTINUATION; } // Send message sendFragment(opcodeType, fin, begin, end, compress); if (onProgressCallback && !onProgressCallback((int)i, (int) steps)) { break; } begin += kChunkSize; } } // Request to flush the send buffer on the background thread if it isn't empty if (!isSendBufferEmpty()) { _socket->wakeUpFromPoll(Socket::kSendRequest); } return WebSocketSendInfo(true, compressionError, payloadSize, wireSize); } void WebSocketTransport::sendFragment(wsheader_type::opcode_type type, bool fin, std::string::const_iterator message_begin, std::string::const_iterator message_end, bool compress) { uint64_t message_size = static_cast(message_end - message_begin); unsigned x = getRandomUnsigned(); uint8_t masking_key[4] = {}; masking_key[0] = (x >> 24); masking_key[1] = (x >> 16) & 0xff; masking_key[2] = (x >> 8) & 0xff; masking_key[3] = (x) & 0xff; std::vector header; header.assign(2 + (message_size >= 126 ? 2 : 0) + (message_size >= 65536 ? 6 : 0) + (_useMask ? 4 : 0), 0); header[0] = type; // The fin bit indicate that this is the last fragment. Fin is French for end. if (fin) { header[0] |= 0x80; } // This bit indicate that the frame is compressed if (compress) { header[0] |= 0x40; } if (message_size < 126) { header[1] = (message_size & 0xff) | (_useMask ? 0x80 : 0); if (_useMask) { header[2] = masking_key[0]; header[3] = masking_key[1]; header[4] = masking_key[2]; header[5] = masking_key[3]; } } else if (message_size < 65536) { header[1] = 126 | (_useMask ? 0x80 : 0); header[2] = (message_size >> 8) & 0xff; header[3] = (message_size >> 0) & 0xff; if (_useMask) { header[4] = masking_key[0]; header[5] = masking_key[1]; header[6] = masking_key[2]; header[7] = masking_key[3]; } } else { // TODO: run coverage testing here header[1] = 127 | (_useMask ? 0x80 : 0); header[2] = (message_size >> 56) & 0xff; header[3] = (message_size >> 48) & 0xff; header[4] = (message_size >> 40) & 0xff; header[5] = (message_size >> 32) & 0xff; header[6] = (message_size >> 24) & 0xff; header[7] = (message_size >> 16) & 0xff; header[8] = (message_size >> 8) & 0xff; header[9] = (message_size >> 0) & 0xff; if (_useMask) { header[10] = masking_key[0]; header[11] = masking_key[1]; header[12] = masking_key[2]; header[13] = masking_key[3]; } } // _txbuf will keep growing until it can be transmitted over the socket: appendToSendBuffer(header, message_begin, message_end, message_size, masking_key); // Now actually send this data sendOnSocket(); } WebSocketSendInfo WebSocketTransport::sendPing(const std::string& message) { bool compress = false; WebSocketSendInfo info = sendData(wsheader_type::PING, message, compress); if (info.success) { std::lock_guard lck(_lastSendPingTimePointMutex); _lastSendPingTimePoint = std::chrono::steady_clock::now(); } return info; } WebSocketSendInfo WebSocketTransport::sendBinary( const std::string& message, const OnProgressCallback& onProgressCallback) { return sendData(wsheader_type::BINARY_FRAME, message, _enablePerMessageDeflate, onProgressCallback); } WebSocketSendInfo WebSocketTransport::sendText( const std::string& message, const OnProgressCallback& onProgressCallback) { return sendData(wsheader_type::TEXT_FRAME, message, _enablePerMessageDeflate, onProgressCallback); } ssize_t WebSocketTransport::send() { std::lock_guard lock(_socketMutex); return _socket->send((char*)&_txbuf[0], _txbuf.size()); } void WebSocketTransport::sendOnSocket() { std::lock_guard lock(_txbufMutex); while (_txbuf.size()) { ssize_t ret = send(); if (ret < 0 && Socket::isWaitNeeded()) { break; } else if (ret <= 0) { closeSocket(); setReadyState(ReadyState::CLOSED); break; } else { _txbuf.erase(_txbuf.begin(), _txbuf.begin() + ret); } } } void WebSocketTransport::sendCloseFrame(uint16_t code, const std::string& reason) { bool compress = false; // if a status is set/was read if (code != WebSocketCloseConstants::kNoStatusCodeErrorCode) { // See list of close events here: // https://developer.mozilla.org/en-US/docs/Web/API/CloseEvent std::string closure{(char)(code >> 8), (char)(code & 0xff)}; // copy reason after code closure.append(reason); sendData(wsheader_type::CLOSE, closure, compress); } else { // no close code/reason set sendData(wsheader_type::CLOSE, "", compress); } } void WebSocketTransport::closeSocket() { std::lock_guard lock(_socketMutex); _socket->close(); } void WebSocketTransport::closeSocketAndSwitchToClosedState( uint16_t code, const std::string& reason, size_t closeWireSize, bool remote) { closeSocket(); { std::lock_guard lock(_closeDataMutex); _closeCode = code; _closeReason = reason; _closeWireSize = closeWireSize; _closeRemote = remote; } setReadyState(ReadyState::CLOSED); _requestInitCancellation = false; } void WebSocketTransport::close( uint16_t code, const std::string& reason, size_t closeWireSize, bool remote) { _requestInitCancellation = true; if (_readyState == ReadyState::CLOSING || _readyState == ReadyState::CLOSED) return; { std::lock_guard lock(_closeDataMutex); _closeCode = code; _closeReason = reason; _closeWireSize = closeWireSize; _closeRemote = remote; } { std::lock_guard lock(_closingTimePointMutex); _closingTimePoint = std::chrono::steady_clock::now(); } setReadyState(ReadyState::CLOSING); sendCloseFrame(code, reason); // wake up the poll, but do not close yet _socket->wakeUpFromPoll(Socket::kSendRequest); } size_t WebSocketTransport::bufferedAmount() const { std::lock_guard lock(_txbufMutex); return _txbuf.size(); } } // namespace ix