IXWebSocket/ixwebsocket/IXWebSocketTransport.cpp

1155 lines
40 KiB
C++

/*
* The MIT License (MIT)
*
* Copyright (c) 2012, 2013 <dhbaird@gmail.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
/*
* IXWebSocketTransport.cpp
* Author: Benjamin Sergeant
* Copyright (c) 2017-2019 Machine Zone, Inc. All rights reserved.
*/
//
// Adapted from https://github.com/dhbaird/easywsclient
//
#include "IXWebSocketTransport.h"
#include "IXSocketFactory.h"
#include "IXSocketTLSOptions.h"
#include "IXUrlParser.h"
#include "IXUtf8Validator.h"
#include "IXWebSocketHandshake.h"
#include "IXWebSocketHttpHeaders.h"
#include <chrono>
#include <cstdarg>
#include <cstdlib>
#include <sstream>
#include <stdlib.h>
#include <string.h>
#include <string>
#include <thread>
#include <vector>
namespace ix
{
const std::string WebSocketTransport::kPingMessage("ixwebsocket::heartbeat");
const int WebSocketTransport::kDefaultPingIntervalSecs(-1);
const bool WebSocketTransport::kDefaultEnablePong(true);
const int WebSocketTransport::kClosingMaximumWaitingDelayInMs(300);
constexpr size_t WebSocketTransport::kChunkSize;
WebSocketTransport::WebSocketTransport()
: _useMask(true)
, _blockingSend(false)
, _receivedMessageCompressed(false)
, _readyState(ReadyState::CLOSED)
, _closeCode(WebSocketCloseConstants::kInternalErrorCode)
, _closeReason(WebSocketCloseConstants::kInternalErrorMessage)
, _closeWireSize(0)
, _closeRemote(false)
, _enablePerMessageDeflate(false)
, _requestInitCancellation(false)
, _closingTimePoint(std::chrono::steady_clock::now())
, _enablePong(kDefaultEnablePong)
, _pingIntervalSecs(kDefaultPingIntervalSecs)
, _pongReceived(false)
, _lastSendPingTimePoint(std::chrono::steady_clock::now())
{
_readbuf.resize(kChunkSize);
}
WebSocketTransport::~WebSocketTransport()
{
;
}
void WebSocketTransport::configure(
const WebSocketPerMessageDeflateOptions& perMessageDeflateOptions,
const SocketTLSOptions& socketTLSOptions,
bool enablePong,
int pingIntervalSecs)
{
_perMessageDeflateOptions = perMessageDeflateOptions;
_enablePerMessageDeflate = _perMessageDeflateOptions.enabled();
_socketTLSOptions = socketTLSOptions;
_enablePong = enablePong;
_pingIntervalSecs = pingIntervalSecs;
}
// Client
WebSocketInitResult WebSocketTransport::connectToUrl(const std::string& url,
const WebSocketHttpHeaders& headers,
int timeoutSecs)
{
std::lock_guard<std::mutex> lock(_socketMutex);
std::string protocol, host, path, query;
int port;
if (!UrlParser::parse(url, protocol, host, path, query, port))
{
std::stringstream ss;
ss << "Could not parse url: '" << url << "'";
return WebSocketInitResult(false, 0, ss.str());
}
std::string errorMsg;
bool tls = protocol == "wss";
_socket = createSocket(tls, -1, errorMsg, _socketTLSOptions);
_perMessageDeflate = std::make_unique<WebSocketPerMessageDeflate>();
if (!_socket)
{
return WebSocketInitResult(false, 0, errorMsg);
}
WebSocketHandshake webSocketHandshake(_requestInitCancellation,
_socket,
_perMessageDeflate,
_perMessageDeflateOptions,
_enablePerMessageDeflate);
auto result =
webSocketHandshake.clientHandshake(url, headers, host, path, port, timeoutSecs);
if (result.success)
{
setReadyState(ReadyState::OPEN);
}
return result;
}
// Server
WebSocketInitResult WebSocketTransport::connectToSocket(std::unique_ptr<Socket> socket,
int timeoutSecs)
{
std::lock_guard<std::mutex> lock(_socketMutex);
// Server should not mask the data it sends to the client
_useMask = false;
_blockingSend = true;
_socket = std::move(socket);
_perMessageDeflate = std::make_unique<WebSocketPerMessageDeflate>();
WebSocketHandshake webSocketHandshake(_requestInitCancellation,
_socket,
_perMessageDeflate,
_perMessageDeflateOptions,
_enablePerMessageDeflate);
auto result = webSocketHandshake.serverHandshake(timeoutSecs);
if (result.success)
{
setReadyState(ReadyState::OPEN);
}
return result;
}
WebSocketTransport::ReadyState WebSocketTransport::getReadyState() const
{
return _readyState;
}
void WebSocketTransport::setReadyState(ReadyState readyState)
{
// No state change, return
if (_readyState == readyState) return;
if (readyState == ReadyState::CLOSED)
{
std::lock_guard<std::mutex> lock(_closeDataMutex);
_onCloseCallback(_closeCode, _closeReason, _closeWireSize, _closeRemote);
_closeCode = WebSocketCloseConstants::kInternalErrorCode;
_closeReason = WebSocketCloseConstants::kInternalErrorMessage;
_closeWireSize = 0;
_closeRemote = false;
}
else if (readyState == ReadyState::OPEN)
{
initTimePointsAfterConnect();
_pongReceived = false;
}
_readyState = readyState;
}
void WebSocketTransport::setOnCloseCallback(const OnCloseCallback& onCloseCallback)
{
_onCloseCallback = onCloseCallback;
}
void WebSocketTransport::initTimePointsAfterConnect()
{
{
std::lock_guard<std::mutex> lock(_lastSendPingTimePointMutex);
_lastSendPingTimePoint = std::chrono::steady_clock::now();
}
}
// Only consider send PING time points for that computation.
bool WebSocketTransport::pingIntervalExceeded()
{
if (_pingIntervalSecs <= 0) return false;
std::lock_guard<std::mutex> lock(_lastSendPingTimePointMutex);
auto now = std::chrono::steady_clock::now();
return now - _lastSendPingTimePoint > std::chrono::seconds(_pingIntervalSecs);
}
WebSocketSendInfo WebSocketTransport::sendHeartBeat()
{
_pongReceived = false;
std::stringstream ss;
ss << kPingMessage << "::" << _pingIntervalSecs << "s";
return sendPing(ss.str());
}
bool WebSocketTransport::closingDelayExceeded()
{
std::lock_guard<std::mutex> lock(_closingTimePointMutex);
auto now = std::chrono::steady_clock::now();
return now - _closingTimePoint > std::chrono::milliseconds(kClosingMaximumWaitingDelayInMs);
}
WebSocketTransport::PollResult WebSocketTransport::poll()
{
if (_readyState == ReadyState::OPEN)
{
if (pingIntervalExceeded())
{
if (!_pongReceived)
{
// ping response (PONG) exceeds the maximum delay, close the connection
close(WebSocketCloseConstants::kInternalErrorCode,
WebSocketCloseConstants::kPingTimeoutMessage);
}
else
{
sendHeartBeat();
}
}
}
// No timeout if state is not OPEN, otherwise computed
// pingIntervalOrTimeoutGCD (equals to -1 if no ping and no ping timeout are set)
int lastingTimeoutDelayInMs = (_readyState != ReadyState::OPEN) ? 0 : _pingIntervalSecs;
if (_pingIntervalSecs > 0)
{
// compute lasting delay to wait for next ping / timeout, if at least one set
auto now = std::chrono::steady_clock::now();
lastingTimeoutDelayInMs = (int) std::chrono::duration_cast<std::chrono::milliseconds>(
now - _lastSendPingTimePoint)
.count();
}
#ifdef _WIN32
// Windows does not have select interrupt capabilities, so wait with a small timeout
if (lastingTimeoutDelayInMs <= 0)
{
lastingTimeoutDelayInMs = 20;
}
#endif
// If we are requesting a cancellation, pass in a positive and small timeout
// to never poll forever without a timeout.
if (_requestInitCancellation)
{
lastingTimeoutDelayInMs = 100;
}
// poll the socket
PollResultType pollResult = _socket->isReadyToRead(lastingTimeoutDelayInMs);
// Make sure we send all the buffered data
// there can be a lot of it for large messages.
if (pollResult == PollResultType::SendRequest)
{
if (!flushSendBuffer())
{
return PollResult::CannotFlushSendBuffer;
}
}
else if (pollResult == PollResultType::ReadyForRead)
{
if (!receiveFromSocket())
{
return PollResult::AbnormalClose;
}
}
else if (pollResult == PollResultType::Error)
{
closeSocket();
}
else if (pollResult == PollResultType::CloseRequest)
{
closeSocket();
}
if (_readyState == ReadyState::CLOSING && closingDelayExceeded())
{
_rxbuf.clear();
// close code and reason were set when calling close()
closeSocket();
setReadyState(ReadyState::CLOSED);
}
return PollResult::Succeeded;
}
bool WebSocketTransport::isSendBufferEmpty() const
{
std::lock_guard<std::mutex> lock(_txbufMutex);
return _txbuf.empty();
}
void WebSocketTransport::appendToSendBuffer(const std::vector<uint8_t>& header,
std::string::const_iterator begin,
std::string::const_iterator end,
uint64_t message_size,
uint8_t masking_key[4])
{
std::lock_guard<std::mutex> lock(_txbufMutex);
_txbuf.insert(_txbuf.end(), header.begin(), header.end());
_txbuf.insert(_txbuf.end(), begin, end);
if (_useMask)
{
for (size_t i = 0; i != (size_t) message_size; ++i)
{
*(_txbuf.end() - (size_t) message_size + i) ^= masking_key[i & 0x3];
}
}
}
void WebSocketTransport::unmaskReceiveBuffer(const wsheader_type& ws)
{
if (ws.mask)
{
for (size_t j = 0; j != ws.N; ++j)
{
_rxbuf[j + ws.header_size] ^= ws.masking_key[j & 0x3];
}
}
}
//
// http://tools.ietf.org/html/rfc6455#section-5.2 Base Framing Protocol
//
// 0 1 2 3
// 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
// +-+-+-+-+-------+-+-------------+-------------------------------+
// |F|R|R|R| opcode|M| Payload len | Extended payload length |
// |I|S|S|S| (4) |A| (7) | (16/64) |
// |N|V|V|V| |S| | (if payload len==126/127) |
// | |1|2|3| |K| | |
// +-+-+-+-+-------+-+-------------+ - - - - - - - - - - - - - - - +
// | Extended payload length continued, if payload len == 127 |
// + - - - - - - - - - - - - - - - +-------------------------------+
// | |Masking-key, if MASK set to 1 |
// +-------------------------------+-------------------------------+
// | Masking-key (continued) | Payload Data |
// +-------------------------------- - - - - - - - - - - - - - - - +
// : Payload Data continued ... :
// + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - +
// | Payload Data continued ... |
// +---------------------------------------------------------------+
//
void WebSocketTransport::dispatch(WebSocketTransport::PollResult pollResult,
const OnMessageCallback& onMessageCallback)
{
while (true)
{
wsheader_type ws;
if (_rxbuf.size() < 2) break; /* Need at least 2 */
const uint8_t* data = (uint8_t*) &_rxbuf[0]; // peek, but don't consume
ws.fin = (data[0] & 0x80) == 0x80;
ws.rsv1 = (data[0] & 0x40) == 0x40;
ws.rsv2 = (data[0] & 0x20) == 0x20;
ws.rsv3 = (data[0] & 0x10) == 0x10;
ws.opcode = (wsheader_type::opcode_type)(data[0] & 0x0f);
ws.mask = (data[1] & 0x80) == 0x80;
ws.N0 = (data[1] & 0x7f);
ws.header_size =
2 + (ws.N0 == 126 ? 2 : 0) + (ws.N0 == 127 ? 8 : 0) + (ws.mask ? 4 : 0);
if (_rxbuf.size() < ws.header_size) break; /* Need: ws.header_size - _rxbuf.size() */
if ((ws.rsv1 && !_enablePerMessageDeflate) || ws.rsv2 || ws.rsv3)
{
close(WebSocketCloseConstants::kProtocolErrorCode,
WebSocketCloseConstants::kProtocolErrorReservedBitUsed,
_rxbuf.size());
return;
}
//
// Calculate payload length:
// 0-125 mean the payload is that long.
// 126 means that the following two bytes indicate the length,
// 127 means the next 8 bytes indicate the length.
//
int i = 0;
if (ws.N0 < 126)
{
ws.N = ws.N0;
i = 2;
}
else if (ws.N0 == 126)
{
ws.N = 0;
ws.N |= ((uint64_t) data[2]) << 8;
ws.N |= ((uint64_t) data[3]) << 0;
i = 4;
}
else if (ws.N0 == 127)
{
ws.N = 0;
ws.N |= ((uint64_t) data[2]) << 56;
ws.N |= ((uint64_t) data[3]) << 48;
ws.N |= ((uint64_t) data[4]) << 40;
ws.N |= ((uint64_t) data[5]) << 32;
ws.N |= ((uint64_t) data[6]) << 24;
ws.N |= ((uint64_t) data[7]) << 16;
ws.N |= ((uint64_t) data[8]) << 8;
ws.N |= ((uint64_t) data[9]) << 0;
i = 10;
}
else
{
// invalid payload length according to the spec. bail out
return;
}
if (ws.mask)
{
ws.masking_key[0] = ((uint8_t) data[i + 0]) << 0;
ws.masking_key[1] = ((uint8_t) data[i + 1]) << 0;
ws.masking_key[2] = ((uint8_t) data[i + 2]) << 0;
ws.masking_key[3] = ((uint8_t) data[i + 3]) << 0;
}
else
{
ws.masking_key[0] = 0;
ws.masking_key[1] = 0;
ws.masking_key[2] = 0;
ws.masking_key[3] = 0;
}
// Prevent integer overflow in the next conditional
const uint64_t maxFrameSize(1ULL << 63);
if (ws.N > maxFrameSize)
{
return;
}
if (_rxbuf.size() < ws.header_size + ws.N)
{
return; /* Need: ws.header_size+ws.N - _rxbuf.size() */
}
if (!ws.fin && (ws.opcode == wsheader_type::PING || ws.opcode == wsheader_type::PONG ||
ws.opcode == wsheader_type::CLOSE))
{
// Control messages should not be fragmented
close(WebSocketCloseConstants::kProtocolErrorCode,
WebSocketCloseConstants::kProtocolErrorCodeControlMessageFragmented);
return;
}
unmaskReceiveBuffer(ws);
std::string frameData(_rxbuf.begin() + ws.header_size,
_rxbuf.begin() + ws.header_size + (size_t) ws.N);
// We got a whole message, now do something with it:
if (ws.opcode == wsheader_type::TEXT_FRAME ||
ws.opcode == wsheader_type::BINARY_FRAME ||
ws.opcode == wsheader_type::CONTINUATION)
{
if (ws.opcode != wsheader_type::CONTINUATION)
{
_fragmentedMessageKind = (ws.opcode == wsheader_type::TEXT_FRAME)
? MessageKind::MSG_TEXT
: MessageKind::MSG_BINARY;
_receivedMessageCompressed = _enablePerMessageDeflate && ws.rsv1;
// Continuation message needs to follow a non-fin TEXT or BINARY message
if (!_chunks.empty())
{
close(WebSocketCloseConstants::kProtocolErrorCode,
WebSocketCloseConstants::kProtocolErrorCodeDataOpcodeOutOfSequence);
}
}
else if (_chunks.empty())
{
// Continuation message need to follow a non-fin TEXT or BINARY message
close(
WebSocketCloseConstants::kProtocolErrorCode,
WebSocketCloseConstants::kProtocolErrorCodeContinuationOpCodeOutOfSequence);
}
//
// Usual case. Small unfragmented messages
//
if (ws.fin && _chunks.empty())
{
emitMessage(
_fragmentedMessageKind, frameData, _receivedMessageCompressed, onMessageCallback);
_receivedMessageCompressed = false;
}
else
{
//
// Add intermediary message to our chunk list.
// We use a chunk list instead of a big buffer because resizing
// large buffer can be very costly when we need to re-allocate
// the internal buffer which is slow and can let the internal OS
// receive buffer fill out.
//
_chunks.emplace_back(frameData);
if (ws.fin)
{
emitMessage(_fragmentedMessageKind,
getMergedChunks(),
_receivedMessageCompressed,
onMessageCallback);
_chunks.clear();
_receivedMessageCompressed = false;
}
else
{
emitMessage(MessageKind::FRAGMENT, std::string(), false, onMessageCallback);
}
}
}
else if (ws.opcode == wsheader_type::PING)
{
// too large
if (frameData.size() > 125)
{
// Unexpected frame type
close(WebSocketCloseConstants::kProtocolErrorCode,
WebSocketCloseConstants::kProtocolErrorPingPayloadOversized);
return;
}
if (_enablePong)
{
// Reply back right away
bool compress = false;
sendData(wsheader_type::PONG, frameData, compress);
}
emitMessage(MessageKind::PING, frameData, false, onMessageCallback);
}
else if (ws.opcode == wsheader_type::PONG)
{
_pongReceived = true;
emitMessage(MessageKind::PONG, frameData, false, onMessageCallback);
}
else if (ws.opcode == wsheader_type::CLOSE)
{
std::string reason;
uint16_t code = 0;
if (ws.N >= 2)
{
// Extract the close code first, available as the first 2 bytes
code |= ((uint64_t) _rxbuf[ws.header_size]) << 8;
code |= ((uint64_t) _rxbuf[ws.header_size + 1]) << 0;
// Get the reason.
if (ws.N > 2)
{
reason = frameData.substr(2, frameData.size());
}
// Validate that the reason is proper utf-8. Autobahn 7.5.1
if (!validateUtf8(reason))
{
code = WebSocketCloseConstants::kInvalidFramePayloadData;
reason = WebSocketCloseConstants::kInvalidFramePayloadDataMessage;
}
//
// Validate close codes. Autobahn 7.9.*
// 1014, 1015 are debattable. The firefox MSDN has a description for them.
// Full list of status code and status range is defined in the dedicated
// RFC section at https://tools.ietf.org/html/rfc6455#page-45
//
if (code < 1000 || code == 1004 || code == 1006 || (code > 1013 && code < 3000))
{
// build up an error message containing the bad error code
std::stringstream ss;
ss << WebSocketCloseConstants::kInvalidCloseCodeMessage << ": " << code;
reason = ss.str();
code = WebSocketCloseConstants::kProtocolErrorCode;
}
}
else
{
// no close code received
code = WebSocketCloseConstants::kNoStatusCodeErrorCode;
reason = WebSocketCloseConstants::kNoStatusCodeErrorMessage;
}
// We receive a CLOSE frame from remote and are NOT the ones who triggered the close
if (_readyState != ReadyState::CLOSING)
{
// send back the CLOSE frame
sendCloseFrame(code, reason);
wakeUpFromPoll(Socket::kCloseRequest);
bool remote = true;
closeSocketAndSwitchToClosedState(code, reason, _rxbuf.size(), remote);
}
else
{
// we got the CLOSE frame answer from our close, so we can close the connection
// if the code/reason are the same
bool identicalReason;
{
std::lock_guard<std::mutex> lock(_closeDataMutex);
identicalReason = _closeCode == code && _closeReason == reason;
}
if (identicalReason)
{
bool remote = false;
closeSocketAndSwitchToClosedState(code, reason, _rxbuf.size(), remote);
}
}
}
else
{
// Unexpected frame type
close(WebSocketCloseConstants::kProtocolErrorCode,
WebSocketCloseConstants::kProtocolErrorMessage,
_rxbuf.size());
}
// Erase the message that has been processed from the input/read buffer
_rxbuf.erase(_rxbuf.begin(), _rxbuf.begin() + ws.header_size + (size_t) ws.N);
}
// if an abnormal closure was raised in poll, and nothing else triggered a CLOSED state in
// the received and processed data then close the connection
if (pollResult != PollResult::Succeeded)
{
_rxbuf.clear();
// if we previously closed the connection (CLOSING state), then set state to CLOSED
// (code/reason were set before)
if (_readyState == ReadyState::CLOSING)
{
closeSocket();
setReadyState(ReadyState::CLOSED);
}
// if we weren't closing, then close using abnormal close code and message
else if (_readyState != ReadyState::CLOSED)
{
closeSocketAndSwitchToClosedState(WebSocketCloseConstants::kAbnormalCloseCode,
WebSocketCloseConstants::kAbnormalCloseMessage,
0,
false);
}
}
}
std::string WebSocketTransport::getMergedChunks() const
{
size_t length = 0;
for (auto&& chunk : _chunks)
{
length += chunk.size();
}
std::string msg;
msg.reserve(length);
for (auto&& chunk : _chunks)
{
msg += chunk;
}
return msg;
}
void WebSocketTransport::emitMessage(MessageKind messageKind,
const std::string& message,
bool compressedMessage,
const OnMessageCallback& onMessageCallback)
{
size_t wireSize = message.size();
// When the RSV1 bit is 1 it means the message is compressed
if (compressedMessage && messageKind != MessageKind::FRAGMENT)
{
bool success = _perMessageDeflate->decompress(message, _decompressedMessage);
if (messageKind == MessageKind::MSG_TEXT && !validateUtf8(_decompressedMessage))
{
close(WebSocketCloseConstants::kInvalidFramePayloadData,
WebSocketCloseConstants::kInvalidFramePayloadDataMessage);
}
else
{
onMessageCallback(_decompressedMessage, wireSize, !success, messageKind);
}
}
else
{
if (messageKind == MessageKind::MSG_TEXT && !validateUtf8(message))
{
close(WebSocketCloseConstants::kInvalidFramePayloadData,
WebSocketCloseConstants::kInvalidFramePayloadDataMessage);
}
else
{
onMessageCallback(message, wireSize, false, messageKind);
}
}
}
unsigned WebSocketTransport::getRandomUnsigned()
{
auto now = std::chrono::system_clock::now();
auto seconds =
std::chrono::duration_cast<std::chrono::seconds>(now.time_since_epoch()).count();
return static_cast<unsigned>(seconds);
}
WebSocketSendInfo WebSocketTransport::sendData(wsheader_type::opcode_type type,
const std::string& message,
bool compress,
const OnProgressCallback& onProgressCallback)
{
if (_readyState != ReadyState::OPEN && _readyState != ReadyState::CLOSING)
{
return WebSocketSendInfo(false);
}
size_t payloadSize = message.size();
size_t wireSize = message.size();
bool compressionError = false;
std::string::const_iterator message_begin = message.begin();
std::string::const_iterator message_end = message.end();
if (compress)
{
if (!_perMessageDeflate->compress(message, _compressedMessage))
{
bool success = false;
compressionError = true;
payloadSize = 0;
wireSize = 0;
return WebSocketSendInfo(success, compressionError, payloadSize, wireSize);
}
compressionError = false;
wireSize = _compressedMessage.size();
message_begin = _compressedMessage.begin();
message_end = _compressedMessage.end();
}
{
std::lock_guard<std::mutex> lock(_txbufMutex);
_txbuf.reserve(wireSize);
}
bool success = true;
// Common case for most message. No fragmentation required.
if (wireSize < kChunkSize)
{
success = sendFragment(type, true, message_begin, message_end, compress);
}
else
{
//
// Large messages need to be fragmented
//
// Rules:
// First message needs to specify a proper type (BINARY or TEXT)
// Intermediary and last messages need to be of type CONTINUATION
// Last message must set the fin byte.
//
auto steps = wireSize / kChunkSize;
std::string::const_iterator begin = message_begin;
std::string::const_iterator end = message_end;
for (uint64_t i = 0; i < steps; ++i)
{
bool firstStep = i == 0;
bool lastStep = (i + 1) == steps;
bool fin = lastStep;
end = begin + kChunkSize;
if (lastStep)
{
end = message_end;
}
auto opcodeType = type;
if (!firstStep)
{
opcodeType = wsheader_type::CONTINUATION;
}
// Send message
if (!sendFragment(opcodeType, fin, begin, end, compress))
{
return WebSocketSendInfo(false);
}
if (onProgressCallback && !onProgressCallback((int) i, (int) steps))
{
break;
}
begin += kChunkSize;
}
}
// Request to flush the send buffer on the background thread if it isn't empty
if (!isSendBufferEmpty())
{
wakeUpFromPoll(Socket::kSendRequest);
// FIXME: we should have a timeout when sending large messages: see #131
if (_blockingSend && !flushSendBuffer())
{
success = false;
}
}
return WebSocketSendInfo(success, compressionError, payloadSize, wireSize);
}
bool WebSocketTransport::sendFragment(wsheader_type::opcode_type type,
bool fin,
std::string::const_iterator message_begin,
std::string::const_iterator message_end,
bool compress)
{
uint64_t message_size = static_cast<uint64_t>(message_end - message_begin);
unsigned x = getRandomUnsigned();
uint8_t masking_key[4] = {};
masking_key[0] = (x >> 24);
masking_key[1] = (x >> 16) & 0xff;
masking_key[2] = (x >> 8) & 0xff;
masking_key[3] = (x) &0xff;
std::vector<uint8_t> header;
header.assign(2 + (message_size >= 126 ? 2 : 0) + (message_size >= 65536 ? 6 : 0) +
(_useMask ? 4 : 0),
0);
header[0] = type;
// The fin bit indicate that this is the last fragment. Fin is French for end.
if (fin)
{
header[0] |= 0x80;
}
// The rsv1 bit indicate that the frame is compressed
// continuation opcodes should not set it. Autobahn 12.2.10 and others 12.X
if (compress && type != wsheader_type::CONTINUATION)
{
header[0] |= 0x40;
}
if (message_size < 126)
{
header[1] = (message_size & 0xff) | (_useMask ? 0x80 : 0);
if (_useMask)
{
header[2] = masking_key[0];
header[3] = masking_key[1];
header[4] = masking_key[2];
header[5] = masking_key[3];
}
}
else if (message_size < 65536)
{
header[1] = 126 | (_useMask ? 0x80 : 0);
header[2] = (message_size >> 8) & 0xff;
header[3] = (message_size >> 0) & 0xff;
if (_useMask)
{
header[4] = masking_key[0];
header[5] = masking_key[1];
header[6] = masking_key[2];
header[7] = masking_key[3];
}
}
else
{ // TODO: run coverage testing here
header[1] = 127 | (_useMask ? 0x80 : 0);
header[2] = (message_size >> 56) & 0xff;
header[3] = (message_size >> 48) & 0xff;
header[4] = (message_size >> 40) & 0xff;
header[5] = (message_size >> 32) & 0xff;
header[6] = (message_size >> 24) & 0xff;
header[7] = (message_size >> 16) & 0xff;
header[8] = (message_size >> 8) & 0xff;
header[9] = (message_size >> 0) & 0xff;
if (_useMask)
{
header[10] = masking_key[0];
header[11] = masking_key[1];
header[12] = masking_key[2];
header[13] = masking_key[3];
}
}
// _txbuf will keep growing until it can be transmitted over the socket:
appendToSendBuffer(header, message_begin, message_end, message_size, masking_key);
// Now actually send this data
return sendOnSocket();
}
WebSocketSendInfo WebSocketTransport::sendPing(const std::string& message)
{
bool compress = false;
WebSocketSendInfo info = sendData(wsheader_type::PING, message, compress);
if (info.success)
{
std::lock_guard<std::mutex> lck(_lastSendPingTimePointMutex);
_lastSendPingTimePoint = std::chrono::steady_clock::now();
}
return info;
}
WebSocketSendInfo WebSocketTransport::sendBinary(const std::string& message,
const OnProgressCallback& onProgressCallback)
{
return sendData(
wsheader_type::BINARY_FRAME, message, _enablePerMessageDeflate, onProgressCallback);
}
WebSocketSendInfo WebSocketTransport::sendText(const std::string& message,
const OnProgressCallback& onProgressCallback)
{
return sendData(
wsheader_type::TEXT_FRAME, message, _enablePerMessageDeflate, onProgressCallback);
}
bool WebSocketTransport::sendOnSocket()
{
std::lock_guard<std::mutex> lock(_txbufMutex);
while (_txbuf.size())
{
ssize_t ret = 0;
{
std::lock_guard<std::mutex> lock(_socketMutex);
ret = _socket->send((char*) &_txbuf[0], _txbuf.size());
}
if (ret < 0 && Socket::isWaitNeeded())
{
break;
}
else if (ret <= 0)
{
closeSocket();
setReadyState(ReadyState::CLOSED);
return false;
}
else
{
_txbuf.erase(_txbuf.begin(), _txbuf.begin() + ret);
}
}
return true;
}
bool WebSocketTransport::receiveFromSocket()
{
while (true)
{
ssize_t ret = _socket->recv((char*) &_readbuf[0], _readbuf.size());
if (ret < 0 && Socket::isWaitNeeded())
{
break;
}
else if (ret <= 0)
{
// if there are received data pending to be processed, then delay the abnormal
// closure to after dispatch (other close code/reason could be read from the
// buffer)
closeSocket();
return false;
}
else
{
_rxbuf.insert(_rxbuf.end(), _readbuf.begin(), _readbuf.begin() + ret);
}
}
return true;
}
void WebSocketTransport::sendCloseFrame(uint16_t code, const std::string& reason)
{
bool compress = false;
// if a status is set/was read
if (code != WebSocketCloseConstants::kNoStatusCodeErrorCode)
{
// See list of close events here:
// https://developer.mozilla.org/en-US/docs/Web/API/CloseEvent
std::string closure {(char) (code >> 8), (char) (code & 0xff)};
// copy reason after code
closure.append(reason);
sendData(wsheader_type::CLOSE, closure, compress);
}
else
{
// no close code/reason set
sendData(wsheader_type::CLOSE, "", compress);
}
}
void WebSocketTransport::closeSocket()
{
std::lock_guard<std::mutex> lock(_socketMutex);
_socket->close();
}
bool WebSocketTransport::wakeUpFromPoll(uint64_t wakeUpCode)
{
std::lock_guard<std::mutex> lock(_socketMutex);
return _socket->wakeUpFromPoll(wakeUpCode);
}
void WebSocketTransport::closeSocketAndSwitchToClosedState(uint16_t code,
const std::string& reason,
size_t closeWireSize,
bool remote)
{
closeSocket();
{
std::lock_guard<std::mutex> lock(_closeDataMutex);
_closeCode = code;
_closeReason = reason;
_closeWireSize = closeWireSize;
_closeRemote = remote;
}
setReadyState(ReadyState::CLOSED);
_requestInitCancellation = false;
}
void WebSocketTransport::close(uint16_t code,
const std::string& reason,
size_t closeWireSize,
bool remote)
{
_requestInitCancellation = true;
if (_readyState == ReadyState::CLOSING || _readyState == ReadyState::CLOSED) return;
if (closeWireSize == 0)
{
closeWireSize = reason.size();
}
{
std::lock_guard<std::mutex> lock(_closeDataMutex);
_closeCode = code;
_closeReason = reason;
_closeWireSize = closeWireSize;
_closeRemote = remote;
}
{
std::lock_guard<std::mutex> lock(_closingTimePointMutex);
_closingTimePoint = std::chrono::steady_clock::now();
}
setReadyState(ReadyState::CLOSING);
sendCloseFrame(code, reason);
// wake up the poll, but do not close yet
wakeUpFromPoll(Socket::kSendRequest);
}
size_t WebSocketTransport::bufferedAmount() const
{
std::lock_guard<std::mutex> lock(_txbufMutex);
return _txbuf.size();
}
bool WebSocketTransport::flushSendBuffer()
{
while (!isSendBufferEmpty() && !_requestInitCancellation)
{
// Wait with a 10ms timeout until the socket is ready to write.
// This way we are not busy looping
PollResultType result = _socket->isReadyToWrite(10);
if (result == PollResultType::Error)
{
closeSocket();
setReadyState(ReadyState::CLOSED);
return false;
}
else if (result == PollResultType::ReadyForWrite)
{
if (!sendOnSocket())
{
return false;
}
}
}
return true;
}
} // namespace ix