KAD/zad2/zad2.py

179 lines
4.8 KiB
Python
Raw Permalink Normal View History

2021-12-05 19:59:44 +01:00
"""
Komputerowa analiza danych
Zadanie 2
Michał Leśniak 195642
"""
2021-12-20 09:37:15 +01:00
from math import sin
2021-12-05 19:59:44 +01:00
from statistics import mean
2021-12-20 09:37:15 +01:00
import matplotlib.pyplot as plt
from chi2_normality import chi2normality_describe
import numpy as np
2021-12-05 19:59:44 +01:00
def var(lst):
x_mean = mean(lst)
return sum((x-x_mean)**2 for x in lst)/len(lst)
def cov(lst_x, lst_y):
assert len(lst_x) == len(lst_y)
x_mean = mean(lst_x)
y_mean = mean(lst_y)
return sum((lst_x[i]-x_mean)*(lst_y[i]-y_mean) for i in range(len(lst_x)))/len(lst_x)
def load_data(*args):
ret = ()
for arg in args:
with open(arg, 'r') as f:
lines = f.read().splitlines()
lst = []
for line in lines:
lst.append(tuple([float(x.strip()) for x in line.split(',')]))
ret += lst,
return ret
2021-12-20 09:37:15 +01:00
def reglin(data, name, model):
model_func, use_reglinw, func_str = model
if use_reglinw:
Y, Z, param_str = reglinw(data, model_func)
else:
Y, Z, param_str = reglinp(data, model_func)
err = Y-Z
lst_err = np.transpose(err)[0].tolist()
lst_y = np.transpose(Y)[0].tolist()
lst_z = np.transpose(Z)[0].tolist()
mse = mean([x**2 for x in lst_err])
md = max([abs(x) for x in lst_err])
var_err = var(lst_err)
var_y = var(lst_y)
r2 = 1-(var_err/var_y)
if len(data[0]) > 2:
print(f'Regresja liniowa wielu zmiennych dla {name}:')
else:
print(f'Prosta regresja liniowa jednej zmiennej dla {name}:')
print(func_str)
print(param_str)
print(f'MSE={mse}')
print(f'maxD={md}')
print(f'VarErr<=VarY - {var_err<=var_y}')
print(f'r2={r2}')
chi2normality_describe(lst_err)
lst_z = np.transpose(Z)[0].tolist()
if len(data[0]) == 2: # print 2D
lst_x, lst_y = zip(*data)
lst_x = list(lst_x)
lst_y = list(lst_y)
plt.figure(1)
ax = plt.axes()
ax.scatter(lst_x, lst_y)
ax.plot(lst_x, lst_z, 'r-')
ax.set_xlabel('X')
ax.set_ylabel('Y')
plt.grid(True)
elif len(data[0]) == 3:
lst_x1, lst_x2, lst_y = zip(*data)
lst_x1 = list(lst_x1)
lst_x2 = list(lst_x2)
lst_y = list(lst_y)
plt.figure(1)
ax = plt.axes(projection='3d')
ax.scatter(lst_x1, lst_x2, lst_y)
ax.scatter(lst_x1, lst_x2, lst_z, color='r')
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('Y')
else:
raise RuntimeError
plt.title(f'{name}\n{func_str}')
plt.figure(2)
plt.hist(err, 50)
plt.xlabel('Err')
plt.title(f'Histogram Err dla {name}\n{func_str}')
plt.grid(True)
plt.show()
def reglinp(data, model_func):
lst_x, lst_y = zip(*data)
lst_x = list(lst_x)
lst_y = list(lst_y)
return model_func(lst_x, lst_y)
def reglinw(data, prepare_data):
X, Y = prepare_data(data)
XT = np.transpose(X)
XTX = np.matmul(XT, X)
try:
inv_XTX = np.linalg.inv(XTX)
except np.linang.LinAlgError:
print("XTX is not inversible")
raise
A = np.matmul(np.matmul(inv_XTX, XT), Y)
Z = np.matmul(X, A)
params = [a[0] for a in A]
params = params[1:] + params[:1]
param_str = []
for i in range(len(params)):
param_str.append(f'{chr(ord("a")+i)} = {params[i]}')
return Y, Z, '\n'.join(param_str)
def model_func1(lst_x, lst_y):
a = mean([lst_y[i]*lst_x[i] for i in range(len(lst_x))]) / \
mean([x**2 for x in lst_x])
Y = np.array([list((y,)) for y in lst_y])
Z = np.array([list((a*x,))for x in lst_x])
return Y, Z, f'a = {a}'
def model_func2(lst_x, lst_y):
2021-12-05 19:59:44 +01:00
a = cov(lst_x, lst_y)/var(lst_x)
2021-12-20 09:37:15 +01:00
b = mean(lst_y) - a*mean(lst_x)
Y = np.array([list((y,)) for y in lst_y])
Z = np.array([list((a*x+b,))for x in lst_x])
return Y, Z, f'a = {a}\nb = {b}'
2021-12-05 19:59:44 +01:00
2021-12-20 09:37:15 +01:00
def model_func3(data):
return np.array([list((1.0, x**2, sin(x))) for x, _ in data]), np.array([list((y,)) for _, y in data])
2021-12-05 19:59:44 +01:00
2021-12-20 09:37:15 +01:00
def model_func4(data):
return np.array([list((1.0, x1, x2)) for x1, x2, _ in data]), np.array([list((y,)) for _, _, y in data])
def model_func5(data):
return np.array([list((1.0, x1**2, x1*x2, x2**2, x1, x2)) for x1, x2, _ in data]), np.array([list((y,)) for _, _, y in data])
MODELS = [
(model_func1, False, '$f(X) = aX$'),
(model_func2, False, '$f(X) = aX + b$'),
(model_func3, True, '$f(X) = aX^2 + bsin(X) + c$'),
(model_func4, True, '$f(X_1, X_2) = aX_1 + bX_2 + c$'),
(model_func5, True,
r'$f(X_1, X_2) = a{X_1}^2 + bX_1 X_2 + c{X_2}^2 +dX_1 +eX_2 +f$')
]
2021-12-05 19:59:44 +01:00
def main():
data1, data2, data3, data4 = load_data(
'data1.csv', 'data2.csv', 'data3.csv', 'data4.csv')
2021-12-20 09:37:15 +01:00
for i in range(3):
reglin(data1, 'data1.csv', MODELS[i])
reglin(data2, 'data2.csv', MODELS[i])
for i in range(3, 5):
reglin(data3, 'data3.csv', MODELS[i])
reglin(data4, 'data4.csv', MODELS[i])
2021-12-05 19:59:44 +01:00
if __name__ == '__main__':
main()