2021-12-05 19:59:44 +01:00
|
|
|
"""
|
|
|
|
Komputerowa analiza danych
|
|
|
|
Zadanie 2
|
|
|
|
Michał Leśniak 195642
|
|
|
|
"""
|
2021-12-20 09:37:15 +01:00
|
|
|
from math import sin
|
2021-12-05 19:59:44 +01:00
|
|
|
from statistics import mean
|
2021-12-20 09:37:15 +01:00
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
from chi2_normality import chi2normality_describe
|
|
|
|
import numpy as np
|
2021-12-05 19:59:44 +01:00
|
|
|
|
|
|
|
|
|
|
|
def var(lst):
|
|
|
|
x_mean = mean(lst)
|
|
|
|
return sum((x-x_mean)**2 for x in lst)/len(lst)
|
|
|
|
|
|
|
|
|
|
|
|
def cov(lst_x, lst_y):
|
|
|
|
assert len(lst_x) == len(lst_y)
|
|
|
|
x_mean = mean(lst_x)
|
|
|
|
y_mean = mean(lst_y)
|
|
|
|
return sum((lst_x[i]-x_mean)*(lst_y[i]-y_mean) for i in range(len(lst_x)))/len(lst_x)
|
|
|
|
|
|
|
|
|
|
|
|
def load_data(*args):
|
|
|
|
ret = ()
|
|
|
|
for arg in args:
|
|
|
|
with open(arg, 'r') as f:
|
|
|
|
lines = f.read().splitlines()
|
|
|
|
lst = []
|
|
|
|
for line in lines:
|
|
|
|
lst.append(tuple([float(x.strip()) for x in line.split(',')]))
|
|
|
|
ret += lst,
|
|
|
|
return ret
|
|
|
|
|
|
|
|
|
2021-12-20 09:37:15 +01:00
|
|
|
def reglin(data, name, model):
|
|
|
|
model_func, use_reglinw, func_str = model
|
|
|
|
if use_reglinw:
|
|
|
|
Y, Z, param_str = reglinw(data, model_func)
|
|
|
|
else:
|
|
|
|
Y, Z, param_str = reglinp(data, model_func)
|
|
|
|
|
|
|
|
err = Y-Z
|
|
|
|
lst_err = np.transpose(err)[0].tolist()
|
|
|
|
lst_y = np.transpose(Y)[0].tolist()
|
|
|
|
lst_z = np.transpose(Z)[0].tolist()
|
|
|
|
mse = mean([x**2 for x in lst_err])
|
|
|
|
md = max([abs(x) for x in lst_err])
|
|
|
|
var_err = var(lst_err)
|
|
|
|
var_y = var(lst_y)
|
|
|
|
r2 = 1-(var_err/var_y)
|
|
|
|
if len(data[0]) > 2:
|
|
|
|
print(f'Regresja liniowa wielu zmiennych dla {name}:')
|
|
|
|
else:
|
|
|
|
print(f'Prosta regresja liniowa jednej zmiennej dla {name}:')
|
|
|
|
print(func_str)
|
|
|
|
print(param_str)
|
|
|
|
print(f'MSE={mse}')
|
|
|
|
print(f'maxD={md}')
|
|
|
|
print(f'VarErr<=VarY - {var_err<=var_y}')
|
|
|
|
print(f'r2={r2}')
|
|
|
|
chi2normality_describe(lst_err)
|
|
|
|
|
|
|
|
lst_z = np.transpose(Z)[0].tolist()
|
|
|
|
|
|
|
|
if len(data[0]) == 2: # print 2D
|
|
|
|
lst_x, lst_y = zip(*data)
|
|
|
|
lst_x = list(lst_x)
|
|
|
|
lst_y = list(lst_y)
|
|
|
|
plt.figure(1)
|
|
|
|
ax = plt.axes()
|
|
|
|
ax.scatter(lst_x, lst_y)
|
|
|
|
ax.plot(lst_x, lst_z, 'r-')
|
|
|
|
ax.set_xlabel('X')
|
|
|
|
ax.set_ylabel('Y')
|
|
|
|
plt.grid(True)
|
|
|
|
elif len(data[0]) == 3:
|
|
|
|
lst_x1, lst_x2, lst_y = zip(*data)
|
|
|
|
lst_x1 = list(lst_x1)
|
|
|
|
lst_x2 = list(lst_x2)
|
|
|
|
lst_y = list(lst_y)
|
|
|
|
plt.figure(1)
|
|
|
|
ax = plt.axes(projection='3d')
|
|
|
|
ax.scatter(lst_x1, lst_x2, lst_y)
|
|
|
|
ax.scatter(lst_x1, lst_x2, lst_z, color='r')
|
|
|
|
ax.set_xlabel('X1')
|
|
|
|
ax.set_ylabel('X2')
|
|
|
|
ax.set_zlabel('Y')
|
|
|
|
else:
|
|
|
|
raise RuntimeError
|
|
|
|
plt.title(f'{name}\n{func_str}')
|
|
|
|
plt.figure(2)
|
|
|
|
plt.hist(err, 50)
|
|
|
|
plt.xlabel('Err')
|
|
|
|
plt.title(f'Histogram Err dla {name}\n{func_str}')
|
|
|
|
plt.grid(True)
|
|
|
|
plt.show()
|
|
|
|
|
|
|
|
|
|
|
|
def reglinp(data, model_func):
|
|
|
|
lst_x, lst_y = zip(*data)
|
|
|
|
lst_x = list(lst_x)
|
|
|
|
lst_y = list(lst_y)
|
|
|
|
return model_func(lst_x, lst_y)
|
|
|
|
|
|
|
|
|
|
|
|
def reglinw(data, prepare_data):
|
|
|
|
X, Y = prepare_data(data)
|
|
|
|
XT = np.transpose(X)
|
|
|
|
XTX = np.matmul(XT, X)
|
|
|
|
try:
|
|
|
|
inv_XTX = np.linalg.inv(XTX)
|
|
|
|
except np.linang.LinAlgError:
|
|
|
|
print("XTX is not inversible")
|
|
|
|
raise
|
|
|
|
A = np.matmul(np.matmul(inv_XTX, XT), Y)
|
|
|
|
Z = np.matmul(X, A)
|
|
|
|
|
|
|
|
params = [a[0] for a in A]
|
|
|
|
params = params[1:] + params[:1]
|
|
|
|
param_str = []
|
|
|
|
for i in range(len(params)):
|
|
|
|
param_str.append(f'{chr(ord("a")+i)} = {params[i]}')
|
|
|
|
return Y, Z, '\n'.join(param_str)
|
|
|
|
|
|
|
|
|
|
|
|
def model_func1(lst_x, lst_y):
|
|
|
|
a = mean([lst_y[i]*lst_x[i] for i in range(len(lst_x))]) / \
|
|
|
|
mean([x**2 for x in lst_x])
|
|
|
|
Y = np.array([list((y,)) for y in lst_y])
|
|
|
|
Z = np.array([list((a*x,))for x in lst_x])
|
|
|
|
return Y, Z, f'a = {a}'
|
|
|
|
|
|
|
|
|
|
|
|
def model_func2(lst_x, lst_y):
|
2021-12-05 19:59:44 +01:00
|
|
|
a = cov(lst_x, lst_y)/var(lst_x)
|
2021-12-20 09:37:15 +01:00
|
|
|
b = mean(lst_y) - a*mean(lst_x)
|
|
|
|
Y = np.array([list((y,)) for y in lst_y])
|
|
|
|
Z = np.array([list((a*x+b,))for x in lst_x])
|
|
|
|
return Y, Z, f'a = {a}\nb = {b}'
|
2021-12-05 19:59:44 +01:00
|
|
|
|
|
|
|
|
2021-12-20 09:37:15 +01:00
|
|
|
def model_func3(data):
|
|
|
|
return np.array([list((1.0, x**2, sin(x))) for x, _ in data]), np.array([list((y,)) for _, y in data])
|
2021-12-05 19:59:44 +01:00
|
|
|
|
2021-12-20 09:37:15 +01:00
|
|
|
|
|
|
|
def model_func4(data):
|
|
|
|
return np.array([list((1.0, x1, x2)) for x1, x2, _ in data]), np.array([list((y,)) for _, _, y in data])
|
|
|
|
|
|
|
|
|
|
|
|
def model_func5(data):
|
|
|
|
return np.array([list((1.0, x1**2, x1*x2, x2**2, x1, x2)) for x1, x2, _ in data]), np.array([list((y,)) for _, _, y in data])
|
|
|
|
|
|
|
|
|
|
|
|
MODELS = [
|
|
|
|
(model_func1, False, '$f(X) = aX$'),
|
|
|
|
(model_func2, False, '$f(X) = aX + b$'),
|
|
|
|
(model_func3, True, '$f(X) = aX^2 + bsin(X) + c$'),
|
|
|
|
(model_func4, True, '$f(X_1, X_2) = aX_1 + bX_2 + c$'),
|
|
|
|
(model_func5, True,
|
|
|
|
r'$f(X_1, X_2) = a{X_1}^2 + bX_1 X_2 + c{X_2}^2 +dX_1 +eX_2 +f$')
|
|
|
|
]
|
2021-12-05 19:59:44 +01:00
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
data1, data2, data3, data4 = load_data(
|
|
|
|
'data1.csv', 'data2.csv', 'data3.csv', 'data4.csv')
|
2021-12-20 09:37:15 +01:00
|
|
|
for i in range(3):
|
|
|
|
reglin(data1, 'data1.csv', MODELS[i])
|
|
|
|
reglin(data2, 'data2.csv', MODELS[i])
|
|
|
|
for i in range(3, 5):
|
|
|
|
reglin(data3, 'data3.csv', MODELS[i])
|
|
|
|
reglin(data4, 'data4.csv', MODELS[i])
|
2021-12-05 19:59:44 +01:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
main()
|