zad3 wip2
This commit is contained in:
		
							
								
								
									
										1
									
								
								zad3/data1.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								zad3/data1.json
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								zad3/data1_errors.png
									
									LFS
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								zad3/data1_errors.png
									
									LFS
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										1
									
								
								zad3/data2.json
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								zad3/data2.json
									
									
									
									
									
										Normal file
									
								
							
										
											
												File diff suppressed because one or more lines are too long
											
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								zad3/data2_errors.png
									
									LFS
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								zad3/data2_errors.png
									
									LFS
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										
											BIN
										
									
								
								zad3/ml_195642_zad3.odt
									
									LFS
									
									
									
										Normal file
									
								
							
							
						
						
									
										
											BIN
										
									
								
								zad3/ml_195642_zad3.odt
									
									LFS
									
									
									
										Normal file
									
								
							
										
											Binary file not shown.
										
									
								
							
							
								
								
									
										68
									
								
								zad3/zad3.py
									
									
									
									
									
								
							
							
						
						
									
										68
									
								
								zad3/zad3.py
									
									
									
									
									
								
							| @@ -1,8 +1,12 @@ | ||||
| import matplotlib.pyplot as plt | ||||
| from matplotlib.animation import FuncAnimation | ||||
| from random import sample | ||||
| from random import sample, shuffle | ||||
| from generate_points import get_random_point | ||||
| import numpy as np | ||||
| import json | ||||
|  | ||||
|  | ||||
| METHODS = ['forgy', 'random_partition'] | ||||
|  | ||||
|  | ||||
| def get_color(i): | ||||
| @@ -49,10 +53,11 @@ def plot_kmeans(all_data, k): | ||||
|     cluster_scatters = [] | ||||
|     centroids, clusters = all_data[0] | ||||
|     for key in clusters: | ||||
|         color = get_color(key/k) | ||||
|         if clusters[key]: | ||||
|             lst_x, lst_y = zip(*clusters[key]) | ||||
|             lst_x = list(lst_x) | ||||
|             lst_y = list(lst_y) | ||||
|         color = get_color(key/k) | ||||
|             cluster_scatters.append(ax.scatter(lst_x, lst_y, color=color)) | ||||
|         centroid_scatters.append(ax.scatter([centroids[key][0]], [ | ||||
|                                  centroids[key][1]], color=color, marker='X')) | ||||
| @@ -81,6 +86,12 @@ def init_centroids(data, k, method='forgy'): #TODO: Add k-means++ and Random Par | ||||
|     match method: | ||||
|         case 'forgy': | ||||
|             return sample(data, k) | ||||
|         case 'random_partition': | ||||
|             shuffled = list(data) | ||||
|             shuffle(shuffled) | ||||
|             div = len(shuffled)/k | ||||
|             partition = [shuffled[int(round(div*i)):int(round(div*(i+1)))] for i in range(k)] | ||||
|             return [np.mean(prt, axis=0) for prt in partition] | ||||
|         case _: | ||||
|             raise NotImplementedError( | ||||
|                 f'method {method} is not implemented yet') | ||||
| @@ -91,9 +102,9 @@ def calc_error(centroids, clusters, k): | ||||
|     for i in range(k): | ||||
|         cluster = np.array(clusters[i]) | ||||
|         centroid = np.array([centroids[i] for _ in range(len(cluster))]) | ||||
|         errors = centroid - cluster | ||||
|         errors = cluster - centroid | ||||
|         squared_errors.append([e**2 for e in errors]) | ||||
|     return sum([np.mean(err) for err in squared_errors]) | ||||
|     return sum([np.mean(err) if err else 0 for err in squared_errors]) | ||||
|  | ||||
|  | ||||
| def plot_error_data(error_data): | ||||
| @@ -112,16 +123,29 @@ def plot_error_data(error_data): | ||||
|     plt.show() | ||||
|  | ||||
|  | ||||
| def main(): | ||||
|     for get_data in [get_data1, get_data2]: | ||||
|         data = get_data() | ||||
| def print_stats(k, data): | ||||
|     print('='*20) | ||||
|     print(f'k={k}') | ||||
|     errs = [x[1] for x in data] | ||||
|     m = np.mean(errs) | ||||
|     std = np.std(errs) | ||||
|     min_err = np.min(errs) | ||||
|     lst_empty = [sum([1 for cluster in centroids_with_clusters[1] if not cluster]) for centroids_with_clusters,_ in data] | ||||
|     print(lst_empty) | ||||
|  | ||||
|  | ||||
| def main(datas): | ||||
|     # for get_data in [get_data1, get_data2]: | ||||
|     #    data = get_data() | ||||
|     for data in datas: | ||||
|         plot_data(data) | ||||
|         for method in METHODS: | ||||
|             kmeans_data = {} | ||||
|         for k in range(2, 21): | ||||
|             for k in [20]:  # range(2, 21): | ||||
|                 kmeans_with_err = [] | ||||
|                 for _ in range(100): | ||||
|                 all_data = [] | ||||
|                 centroids = init_centroids(data, k) | ||||
|                     centroids_with_clusters = [] | ||||
|                     centroids = init_centroids(data, k, method=method) | ||||
|                     clusters = {} | ||||
|                     for i in range(k): | ||||
|                         clusters[i] = [] | ||||
| @@ -129,7 +153,7 @@ def main(): | ||||
|                         lengths = [calc_length(c, point) for c in centroids] | ||||
|                         index_min = np.argmin(lengths) | ||||
|                         clusters[index_min].append(point) | ||||
|                 all_data.append((list(centroids), clusters)) | ||||
|                     centroids_with_clusters.append((list(centroids), clusters)) | ||||
|                     for _ in range(100): | ||||
|                         for key in clusters: | ||||
|                             if clusters[key]: | ||||
| @@ -138,14 +162,17 @@ def main(): | ||||
|                         for i in range(k): | ||||
|                             clusters[i] = [] | ||||
|                         for point in data: | ||||
|                         lengths = [calc_length(c, point) for c in centroids] | ||||
|                             lengths = [calc_length(c, point) | ||||
|                                     for c in centroids] | ||||
|                             index_min = np.argmin(lengths) | ||||
|                             clusters[index_min].append(point) | ||||
|                     all_data.append((list(centroids), clusters)) | ||||
|                     if all([all(np.isclose(all_data[-1][0][i], all_data[-2][0][i])) for i in range(k)]): | ||||
|                         centroids_with_clusters.append( | ||||
|                             (list(centroids), clusters)) | ||||
|                         if all([all(np.isclose(centroids_with_clusters[-1][0][i], centroids_with_clusters[-2][0][i])) for i in range(k)]): | ||||
|                             break | ||||
|                     err = calc_error(centroids, clusters, k) | ||||
|                 kmeans_with_err.append((all_data, err)) | ||||
|                     kmeans_with_err.append((centroids_with_clusters, err)) | ||||
|                 print_stats(k, [(iterations[-1],err) for iterations, err in kmeans_with_err]) | ||||
|                 min_err = kmeans_with_err[0][1] | ||||
|                 kmeans = kmeans_with_err[0][0] | ||||
|                 for temp_kmeans, err in kmeans_with_err: | ||||
| @@ -154,9 +181,14 @@ def main(): | ||||
|                         kmeans = temp_kmeans | ||||
|                 kmeans_data[k]=(kmeans, min_err) | ||||
|                 plot_kmeans(kmeans, k) | ||||
|         error_data = [[i, kmeans_data[i][1]] for i in range(2, 21, 2)] | ||||
|         plot_error_data(error_data) | ||||
|             #error_data = [[i, kmeans_data[i][1]] for i in range(2, 21, 2)] | ||||
|             #plot_error_data(error_data) | ||||
|  | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     main() | ||||
|     datas = [] | ||||
|     with open('data1.json', 'r') as d: | ||||
|         datas.append(json.loads(d.read())) | ||||
|     with open('data2.json', 'r') as d: | ||||
|         datas.append(json.loads(d.read())) | ||||
|     main(datas) | ||||
|   | ||||
		Reference in New Issue
	
	Block a user