Zad2 skończone
This commit is contained in:
parent
2efbd423ad
commit
fc5a5d8599
2
.gitattributes
vendored
2
.gitattributes
vendored
@ -1 +1,3 @@
|
|||||||
*.pdf filter=lfs diff=lfs merge=lfs -text
|
*.pdf filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.odt filter=lfs diff=lfs merge=lfs -text
|
||||||
|
*.png filter=lfs diff=lfs merge=lfs -text
|
||||||
|
154
.gitignore
vendored
154
.gitignore
vendored
@ -1 +1,153 @@
|
|||||||
*.zip
|
*.zip
|
||||||
|
# Byte-compiled / optimized / DLL files
|
||||||
|
__pycache__/
|
||||||
|
*.py[cod]
|
||||||
|
*$py.class
|
||||||
|
|
||||||
|
# C extensions
|
||||||
|
*.so
|
||||||
|
|
||||||
|
# Distribution / packaging
|
||||||
|
.Python
|
||||||
|
build/
|
||||||
|
develop-eggs/
|
||||||
|
dist/
|
||||||
|
downloads/
|
||||||
|
eggs/
|
||||||
|
.eggs/
|
||||||
|
lib/
|
||||||
|
lib64/
|
||||||
|
parts/
|
||||||
|
sdist/
|
||||||
|
var/
|
||||||
|
wheels/
|
||||||
|
share/python-wheels/
|
||||||
|
*.egg-info/
|
||||||
|
.installed.cfg
|
||||||
|
*.egg
|
||||||
|
MANIFEST
|
||||||
|
|
||||||
|
# PyInstaller
|
||||||
|
# Usually these files are written by a python script from a template
|
||||||
|
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
||||||
|
*.manifest
|
||||||
|
*.spec
|
||||||
|
|
||||||
|
# Installer logs
|
||||||
|
pip-log.txt
|
||||||
|
pip-delete-this-directory.txt
|
||||||
|
|
||||||
|
# Unit test / coverage reports
|
||||||
|
htmlcov/
|
||||||
|
.tox/
|
||||||
|
.nox/
|
||||||
|
.coverage
|
||||||
|
.coverage.*
|
||||||
|
.cache
|
||||||
|
nosetests.xml
|
||||||
|
coverage.xml
|
||||||
|
*.cover
|
||||||
|
*.py,cover
|
||||||
|
.hypothesis/
|
||||||
|
.pytest_cache/
|
||||||
|
cover/
|
||||||
|
|
||||||
|
# Translations
|
||||||
|
*.mo
|
||||||
|
*.pot
|
||||||
|
|
||||||
|
# Django stuff:
|
||||||
|
*.log
|
||||||
|
local_settings.py
|
||||||
|
db.sqlite3
|
||||||
|
db.sqlite3-journal
|
||||||
|
|
||||||
|
# Flask stuff:
|
||||||
|
instance/
|
||||||
|
.webassets-cache
|
||||||
|
|
||||||
|
# Scrapy stuff:
|
||||||
|
.scrapy
|
||||||
|
|
||||||
|
# Sphinx documentation
|
||||||
|
docs/_build/
|
||||||
|
|
||||||
|
# PyBuilder
|
||||||
|
.pybuilder/
|
||||||
|
target/
|
||||||
|
|
||||||
|
# Jupyter Notebook
|
||||||
|
.ipynb_checkpoints
|
||||||
|
|
||||||
|
# IPython
|
||||||
|
profile_default/
|
||||||
|
ipython_config.py
|
||||||
|
|
||||||
|
# pyenv
|
||||||
|
# For a library or package, you might want to ignore these files since the code is
|
||||||
|
# intended to run in multiple environments; otherwise, check them in:
|
||||||
|
# .python-version
|
||||||
|
|
||||||
|
# pipenv
|
||||||
|
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
||||||
|
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
||||||
|
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
||||||
|
# install all needed dependencies.
|
||||||
|
#Pipfile.lock
|
||||||
|
|
||||||
|
# poetry
|
||||||
|
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
||||||
|
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
||||||
|
# commonly ignored for libraries.
|
||||||
|
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
||||||
|
#poetry.lock
|
||||||
|
|
||||||
|
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
|
||||||
|
__pypackages__/
|
||||||
|
|
||||||
|
# Celery stuff
|
||||||
|
celerybeat-schedule
|
||||||
|
celerybeat.pid
|
||||||
|
|
||||||
|
# SageMath parsed files
|
||||||
|
*.sage.py
|
||||||
|
|
||||||
|
# Environments
|
||||||
|
.env
|
||||||
|
.venv
|
||||||
|
env/
|
||||||
|
venv/
|
||||||
|
ENV/
|
||||||
|
env.bak/
|
||||||
|
venv.bak/
|
||||||
|
|
||||||
|
# Spyder project settings
|
||||||
|
.spyderproject
|
||||||
|
.spyproject
|
||||||
|
|
||||||
|
# Rope project settings
|
||||||
|
.ropeproject
|
||||||
|
|
||||||
|
# mkdocs documentation
|
||||||
|
/site
|
||||||
|
|
||||||
|
# mypy
|
||||||
|
.mypy_cache/
|
||||||
|
.dmypy.json
|
||||||
|
dmypy.json
|
||||||
|
|
||||||
|
# Pyre type checker
|
||||||
|
.pyre/
|
||||||
|
|
||||||
|
# pytype static type analyzer
|
||||||
|
.pytype/
|
||||||
|
|
||||||
|
# Cython debug symbols
|
||||||
|
cython_debug/
|
||||||
|
|
||||||
|
# PyCharm
|
||||||
|
# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
|
||||||
|
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
||||||
|
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
||||||
|
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
||||||
|
#.idea/
|
BIN
zad2/ml_195642_zad2.odt
(Stored with Git LFS)
Normal file
BIN
zad2/ml_195642_zad2.odt
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/ml_195642_zad2.pdf
(Stored with Git LFS)
Normal file
BIN
zad2/ml_195642_zad2.pdf
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data1_m1.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data1_m1.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data1_m1_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data1_m1_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data1_m2.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data1_m2.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data1_m2_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data1_m2_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data1_m3.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data1_m3.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data1_m3_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data1_m3_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data2_m1.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data2_m1.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data2_m1_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data2_m1_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data2_m2.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data2_m2.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data2_m2_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data2_m2_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data2_m3.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data2_m3.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data2_m3_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data2_m3_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data3_m4.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data3_m4.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data3_m4_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data3_m4_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data3_m5.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data3_m5.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data3_m5_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data3_m5_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data4_m4.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data4_m4.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data4_m4_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data4_m4_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data4_m5.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data4_m5.png
(Stored with Git LFS)
Normal file
Binary file not shown.
BIN
zad2/wykresy/data4_m5_h.png
(Stored with Git LFS)
Normal file
BIN
zad2/wykresy/data4_m5_h.png
(Stored with Git LFS)
Normal file
Binary file not shown.
155
zad2/zad2.py
155
zad2/zad2.py
@ -3,7 +3,11 @@ Komputerowa analiza danych
|
|||||||
Zadanie 2
|
Zadanie 2
|
||||||
Michał Leśniak 195642
|
Michał Leśniak 195642
|
||||||
"""
|
"""
|
||||||
|
from math import sin
|
||||||
from statistics import mean
|
from statistics import mean
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from chi2_normality import chi2normality_describe
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
|
||||||
def var(lst):
|
def var(lst):
|
||||||
@ -30,41 +34,144 @@ def load_data(*args):
|
|||||||
return ret
|
return ret
|
||||||
|
|
||||||
|
|
||||||
def model1(data):
|
def reglin(data, name, model):
|
||||||
lst_x = [x for x, _ in data]
|
model_func, use_reglinw, func_str = model
|
||||||
lst_y = [y for _, y in data]
|
if use_reglinw:
|
||||||
|
Y, Z, param_str = reglinw(data, model_func)
|
||||||
|
else:
|
||||||
|
Y, Z, param_str = reglinp(data, model_func)
|
||||||
|
|
||||||
a = cov(lst_x, lst_y)/var(lst_x)
|
err = Y-Z
|
||||||
print(f'f(X) = {a} * X')
|
lst_err = np.transpose(err)[0].tolist()
|
||||||
|
lst_y = np.transpose(Y)[0].tolist()
|
||||||
|
lst_z = np.transpose(Z)[0].tolist()
|
||||||
|
mse = mean([x**2 for x in lst_err])
|
||||||
|
md = max([abs(x) for x in lst_err])
|
||||||
|
var_err = var(lst_err)
|
||||||
|
var_y = var(lst_y)
|
||||||
|
r2 = 1-(var_err/var_y)
|
||||||
|
if len(data[0]) > 2:
|
||||||
|
print(f'Regresja liniowa wielu zmiennych dla {name}:')
|
||||||
|
else:
|
||||||
|
print(f'Prosta regresja liniowa jednej zmiennej dla {name}:')
|
||||||
|
print(func_str)
|
||||||
|
print(param_str)
|
||||||
|
print(f'MSE={mse}')
|
||||||
|
print(f'maxD={md}')
|
||||||
|
print(f'VarErr<=VarY - {var_err<=var_y}')
|
||||||
|
print(f'r2={r2}')
|
||||||
|
chi2normality_describe(lst_err)
|
||||||
|
|
||||||
|
lst_z = np.transpose(Z)[0].tolist()
|
||||||
|
|
||||||
|
if len(data[0]) == 2: # print 2D
|
||||||
|
lst_x, lst_y = zip(*data)
|
||||||
|
lst_x = list(lst_x)
|
||||||
|
lst_y = list(lst_y)
|
||||||
|
plt.figure(1)
|
||||||
|
ax = plt.axes()
|
||||||
|
ax.scatter(lst_x, lst_y)
|
||||||
|
ax.plot(lst_x, lst_z, 'r-')
|
||||||
|
ax.set_xlabel('X')
|
||||||
|
ax.set_ylabel('Y')
|
||||||
|
plt.grid(True)
|
||||||
|
elif len(data[0]) == 3:
|
||||||
|
lst_x1, lst_x2, lst_y = zip(*data)
|
||||||
|
lst_x1 = list(lst_x1)
|
||||||
|
lst_x2 = list(lst_x2)
|
||||||
|
lst_y = list(lst_y)
|
||||||
|
plt.figure(1)
|
||||||
|
ax = plt.axes(projection='3d')
|
||||||
|
ax.scatter(lst_x1, lst_x2, lst_y)
|
||||||
|
ax.scatter(lst_x1, lst_x2, lst_z, color='r')
|
||||||
|
ax.set_xlabel('X1')
|
||||||
|
ax.set_ylabel('X2')
|
||||||
|
ax.set_zlabel('Y')
|
||||||
|
else:
|
||||||
|
raise RuntimeError
|
||||||
|
plt.title(f'{name}\n{func_str}')
|
||||||
|
plt.figure(2)
|
||||||
|
plt.hist(err, 50)
|
||||||
|
plt.xlabel('Err')
|
||||||
|
plt.title(f'Histogram Err dla {name}\n{func_str}')
|
||||||
|
plt.grid(True)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
def model2(data):
|
def reglinp(data, model_func):
|
||||||
lst_x = [x for x, _ in data]
|
lst_x, lst_y = zip(*data)
|
||||||
lst_y = [y for _, y in data]
|
lst_x = list(lst_x)
|
||||||
|
lst_y = list(lst_y)
|
||||||
|
return model_func(lst_x, lst_y)
|
||||||
|
|
||||||
|
|
||||||
|
def reglinw(data, prepare_data):
|
||||||
|
X, Y = prepare_data(data)
|
||||||
|
XT = np.transpose(X)
|
||||||
|
XTX = np.matmul(XT, X)
|
||||||
|
try:
|
||||||
|
inv_XTX = np.linalg.inv(XTX)
|
||||||
|
except np.linang.LinAlgError:
|
||||||
|
print("XTX is not inversible")
|
||||||
|
raise
|
||||||
|
A = np.matmul(np.matmul(inv_XTX, XT), Y)
|
||||||
|
Z = np.matmul(X, A)
|
||||||
|
|
||||||
|
params = [a[0] for a in A]
|
||||||
|
params = params[1:] + params[:1]
|
||||||
|
param_str = []
|
||||||
|
for i in range(len(params)):
|
||||||
|
param_str.append(f'{chr(ord("a")+i)} = {params[i]}')
|
||||||
|
return Y, Z, '\n'.join(param_str)
|
||||||
|
|
||||||
|
|
||||||
|
def model_func1(lst_x, lst_y):
|
||||||
|
a = mean([lst_y[i]*lst_x[i] for i in range(len(lst_x))]) / \
|
||||||
|
mean([x**2 for x in lst_x])
|
||||||
|
Y = np.array([list((y,)) for y in lst_y])
|
||||||
|
Z = np.array([list((a*x,))for x in lst_x])
|
||||||
|
return Y, Z, f'a = {a}'
|
||||||
|
|
||||||
|
|
||||||
|
def model_func2(lst_x, lst_y):
|
||||||
a = cov(lst_x, lst_y)/var(lst_x)
|
a = cov(lst_x, lst_y)/var(lst_x)
|
||||||
b = mean(lst_y) - a*mean(lst_x)
|
b = mean(lst_y) - a*mean(lst_x)
|
||||||
print(f'f(X) = {a} * X + {b}')
|
Y = np.array([list((y,)) for y in lst_y])
|
||||||
|
Z = np.array([list((a*x+b,))for x in lst_x])
|
||||||
|
return Y, Z, f'a = {a}\nb = {b}'
|
||||||
|
|
||||||
|
|
||||||
|
def model_func3(data):
|
||||||
|
return np.array([list((1.0, x**2, sin(x))) for x, _ in data]), np.array([list((y,)) for _, y in data])
|
||||||
|
|
||||||
|
|
||||||
|
def model_func4(data):
|
||||||
|
return np.array([list((1.0, x1, x2)) for x1, x2, _ in data]), np.array([list((y,)) for _, _, y in data])
|
||||||
|
|
||||||
|
|
||||||
|
def model_func5(data):
|
||||||
|
return np.array([list((1.0, x1**2, x1*x2, x2**2, x1, x2)) for x1, x2, _ in data]), np.array([list((y,)) for _, _, y in data])
|
||||||
|
|
||||||
|
|
||||||
|
MODELS = [
|
||||||
|
(model_func1, False, '$f(X) = aX$'),
|
||||||
|
(model_func2, False, '$f(X) = aX + b$'),
|
||||||
|
(model_func3, True, '$f(X) = aX^2 + bsin(X) + c$'),
|
||||||
|
(model_func4, True, '$f(X_1, X_2) = aX_1 + bX_2 + c$'),
|
||||||
|
(model_func5, True,
|
||||||
|
r'$f(X_1, X_2) = a{X_1}^2 + bX_1 X_2 + c{X_2}^2 +dX_1 +eX_2 +f$')
|
||||||
|
]
|
||||||
|
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
data1, data2, data3, data4 = load_data(
|
data1, data2, data3, data4 = load_data(
|
||||||
'data1.csv', 'data2.csv', 'data3.csv', 'data4.csv')
|
'data1.csv', 'data2.csv', 'data3.csv', 'data4.csv')
|
||||||
print(var([x for x, _ in data1]))
|
for i in range(3):
|
||||||
print(cov([x for x, _ in data1], [y for _, y in data1]))
|
reglin(data1, 'data1.csv', MODELS[i])
|
||||||
# print(data2)
|
reglin(data2, 'data2.csv', MODELS[i])
|
||||||
# print(data3)
|
for i in range(3, 5):
|
||||||
# print(data4)
|
reglin(data3, 'data3.csv', MODELS[i])
|
||||||
model1(data1)
|
reglin(data4, 'data4.csv', MODELS[i])
|
||||||
model1(data2)
|
|
||||||
model2(data1)
|
|
||||||
model2(data2)
|
|
||||||
x_mean = mean([x for x, _ in data1])
|
|
||||||
y_mean = mean([y for _, y in data1])
|
|
||||||
xy = sum([x*y for x, y in data1])
|
|
||||||
x_2 = sum([x**2 for x, _ in data1])
|
|
||||||
print(sum([2*x-2*x*y for x,y in data1])/len(data1))
|
|
||||||
print(xy/x_2)
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
Loading…
Reference in New Issue
Block a user