Zad2 skończone

This commit is contained in:
Michał Leśniak 2021-12-20 09:37:15 +01:00
parent 2efbd423ad
commit fc5a5d8599
25 changed files with 352 additions and 25 deletions

2
.gitattributes vendored
View File

@ -1 +1,3 @@
*.pdf filter=lfs diff=lfs merge=lfs -text *.pdf filter=lfs diff=lfs merge=lfs -text
*.odt filter=lfs diff=lfs merge=lfs -text
*.png filter=lfs diff=lfs merge=lfs -text

154
.gitignore vendored
View File

@ -1 +1,153 @@
*.zip *.zip
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
cover/
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
# For a library or package, you might want to ignore these files since the code is
# intended to run in multiple environments; otherwise, check them in:
# .python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# poetry
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
# This is especially recommended for binary packages to ensure reproducibility, and is more
# commonly ignored for libraries.
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
#poetry.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
ENV/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/
# PyCharm
# JetBrains specific template is maintainted in a separate JetBrains.gitignore that can
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
# and can be added to the global gitignore or merged into this file. For a more nuclear
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
#.idea/

BIN
zad2/ml_195642_zad2.odt (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/ml_195642_zad2.pdf (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data1_m1.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data1_m1_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data1_m2.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data1_m2_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data1_m3.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data1_m3_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data2_m1.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data2_m1_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data2_m2.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data2_m2_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data2_m3.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data2_m3_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data3_m4.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data3_m4_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data3_m5.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data3_m5_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data4_m4.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data4_m4_h.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data4_m5.png (Stored with Git LFS) Normal file

Binary file not shown.

BIN
zad2/wykresy/data4_m5_h.png (Stored with Git LFS) Normal file

Binary file not shown.

View File

@ -3,7 +3,11 @@ Komputerowa analiza danych
Zadanie 2 Zadanie 2
Michał Leśniak 195642 Michał Leśniak 195642
""" """
from math import sin
from statistics import mean from statistics import mean
import matplotlib.pyplot as plt
from chi2_normality import chi2normality_describe
import numpy as np
def var(lst): def var(lst):
@ -30,41 +34,144 @@ def load_data(*args):
return ret return ret
def model1(data): def reglin(data, name, model):
lst_x = [x for x, _ in data] model_func, use_reglinw, func_str = model
lst_y = [y for _, y in data] if use_reglinw:
Y, Z, param_str = reglinw(data, model_func)
else:
Y, Z, param_str = reglinp(data, model_func)
a = cov(lst_x, lst_y)/var(lst_x) err = Y-Z
print(f'f(X) = {a} * X') lst_err = np.transpose(err)[0].tolist()
lst_y = np.transpose(Y)[0].tolist()
lst_z = np.transpose(Z)[0].tolist()
mse = mean([x**2 for x in lst_err])
md = max([abs(x) for x in lst_err])
var_err = var(lst_err)
var_y = var(lst_y)
r2 = 1-(var_err/var_y)
if len(data[0]) > 2:
print(f'Regresja liniowa wielu zmiennych dla {name}:')
else:
print(f'Prosta regresja liniowa jednej zmiennej dla {name}:')
print(func_str)
print(param_str)
print(f'MSE={mse}')
print(f'maxD={md}')
print(f'VarErr<=VarY - {var_err<=var_y}')
print(f'r2={r2}')
chi2normality_describe(lst_err)
lst_z = np.transpose(Z)[0].tolist()
if len(data[0]) == 2: # print 2D
lst_x, lst_y = zip(*data)
lst_x = list(lst_x)
lst_y = list(lst_y)
plt.figure(1)
ax = plt.axes()
ax.scatter(lst_x, lst_y)
ax.plot(lst_x, lst_z, 'r-')
ax.set_xlabel('X')
ax.set_ylabel('Y')
plt.grid(True)
elif len(data[0]) == 3:
lst_x1, lst_x2, lst_y = zip(*data)
lst_x1 = list(lst_x1)
lst_x2 = list(lst_x2)
lst_y = list(lst_y)
plt.figure(1)
ax = plt.axes(projection='3d')
ax.scatter(lst_x1, lst_x2, lst_y)
ax.scatter(lst_x1, lst_x2, lst_z, color='r')
ax.set_xlabel('X1')
ax.set_ylabel('X2')
ax.set_zlabel('Y')
else:
raise RuntimeError
plt.title(f'{name}\n{func_str}')
plt.figure(2)
plt.hist(err, 50)
plt.xlabel('Err')
plt.title(f'Histogram Err dla {name}\n{func_str}')
plt.grid(True)
plt.show()
def model2(data): def reglinp(data, model_func):
lst_x = [x for x, _ in data] lst_x, lst_y = zip(*data)
lst_y = [y for _, y in data] lst_x = list(lst_x)
lst_y = list(lst_y)
return model_func(lst_x, lst_y)
def reglinw(data, prepare_data):
X, Y = prepare_data(data)
XT = np.transpose(X)
XTX = np.matmul(XT, X)
try:
inv_XTX = np.linalg.inv(XTX)
except np.linang.LinAlgError:
print("XTX is not inversible")
raise
A = np.matmul(np.matmul(inv_XTX, XT), Y)
Z = np.matmul(X, A)
params = [a[0] for a in A]
params = params[1:] + params[:1]
param_str = []
for i in range(len(params)):
param_str.append(f'{chr(ord("a")+i)} = {params[i]}')
return Y, Z, '\n'.join(param_str)
def model_func1(lst_x, lst_y):
a = mean([lst_y[i]*lst_x[i] for i in range(len(lst_x))]) / \
mean([x**2 for x in lst_x])
Y = np.array([list((y,)) for y in lst_y])
Z = np.array([list((a*x,))for x in lst_x])
return Y, Z, f'a = {a}'
def model_func2(lst_x, lst_y):
a = cov(lst_x, lst_y)/var(lst_x) a = cov(lst_x, lst_y)/var(lst_x)
b = mean(lst_y) - a*mean(lst_x) b = mean(lst_y) - a*mean(lst_x)
print(f'f(X) = {a} * X + {b}') Y = np.array([list((y,)) for y in lst_y])
Z = np.array([list((a*x+b,))for x in lst_x])
return Y, Z, f'a = {a}\nb = {b}'
def model_func3(data):
return np.array([list((1.0, x**2, sin(x))) for x, _ in data]), np.array([list((y,)) for _, y in data])
def model_func4(data):
return np.array([list((1.0, x1, x2)) for x1, x2, _ in data]), np.array([list((y,)) for _, _, y in data])
def model_func5(data):
return np.array([list((1.0, x1**2, x1*x2, x2**2, x1, x2)) for x1, x2, _ in data]), np.array([list((y,)) for _, _, y in data])
MODELS = [
(model_func1, False, '$f(X) = aX$'),
(model_func2, False, '$f(X) = aX + b$'),
(model_func3, True, '$f(X) = aX^2 + bsin(X) + c$'),
(model_func4, True, '$f(X_1, X_2) = aX_1 + bX_2 + c$'),
(model_func5, True,
r'$f(X_1, X_2) = a{X_1}^2 + bX_1 X_2 + c{X_2}^2 +dX_1 +eX_2 +f$')
]
def main(): def main():
data1, data2, data3, data4 = load_data( data1, data2, data3, data4 = load_data(
'data1.csv', 'data2.csv', 'data3.csv', 'data4.csv') 'data1.csv', 'data2.csv', 'data3.csv', 'data4.csv')
print(var([x for x, _ in data1])) for i in range(3):
print(cov([x for x, _ in data1], [y for _, y in data1])) reglin(data1, 'data1.csv', MODELS[i])
# print(data2) reglin(data2, 'data2.csv', MODELS[i])
# print(data3) for i in range(3, 5):
# print(data4) reglin(data3, 'data3.csv', MODELS[i])
model1(data1) reglin(data4, 'data4.csv', MODELS[i])
model1(data2)
model2(data1)
model2(data2)
x_mean = mean([x for x, _ in data1])
y_mean = mean([y for _, y in data1])
xy = sum([x*y for x, y in data1])
x_2 = sum([x**2 for x, _ in data1])
print(sum([2*x-2*x*y for x,y in data1])/len(data1))
print(xy/x_2)
if __name__ == '__main__': if __name__ == '__main__':