import kmeans as km import som import numpy as np import utils import json METHODS = ['forgy', 'random_partition'] SOM_INIT_METHODS = ['random', 'zeros'] def get_datas_from_json(): datas = [] with open('data1.json', 'r') as d: datas.append(json.loads(d.read())) with open('data2.json', 'r') as d: datas.append(json.loads(d.read())) return datas def get_datas_random(): datas = [] for get_data in [utils.get_data1, utils.get_data2]: datas.append(get_data()) return datas def main(): datas = get_datas_from_json() rand = np.random.RandomState(0) index = 1 print("Self-organizing map") for data in datas: print(f'Data set: {index}') utils.plot_data(data) for method in SOM_INIT_METHODS: print(f'Initialization method: {method}') errors = [] for k in range(2, 21, 2): som_data = som.init_neurons(data, k, rand, method) soms_with_error = som.train_som(som_data, data, algorithm='kohonen') error = soms_with_error[-1][1] errors.append((k, error)) soms,_ = zip(*soms_with_error) #som.plot_with_data(soms, data, f'_{method}_{k}_data{index}') utils.plot_error_data(errors) soms_with_errors = [] for _ in range(100): som_data = som.init_neurons(data, k, rand, method) soms_with_error = som.train_som(som_data, data, algorithm='kohonen') soms_with_errors.append(soms_with_error[-1]) som.print_som_stats(soms_with_errors, data) index += 1 index = 1 for data in datas: utils.plot_data(data) for method in METHODS: print(f'Method: {method}') kmeans_data = {} for k in range(2, 21): kmeans_with_err = km.kmeans(data, method, k) km.print_stats(k, [(iterations[-1], err) for iterations, err in kmeans_with_err]) min_err = kmeans_with_err[0][1] kmeans = kmeans_with_err[0][0] for temp_kmeans, err in kmeans_with_err: if err < min_err: min_err = err kmeans = temp_kmeans kmeans_data[k] = (kmeans, min_err) km.plot_kmeans(kmeans, k, f'_{method}_{k}_{index}') error_data = [[i, kmeans_data[i][1]] for i in range(2, 21, 2)] utils.plot_error_data(error_data) index += 1 if __name__ == '__main__': main()