KAD/zad3/zad3.py
2022-01-17 16:30:03 +01:00

163 lines
5.0 KiB
Python

import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation
from random import sample
from generate_points import get_random_point
import numpy as np
def get_color(i):
return plt.get_cmap('tab20')(i)
def get_data1():
data = []
for _ in range(200):
data.append(get_random_point((0, 0), 1))
return data
def get_data2():
data = []
for i in range(2):
for _ in range(100):
data.append(get_random_point((3*((-1)**i), 0), 0.5))
return data
def plot_data(data):
lst_x, lst_y = zip(*data)
lst_x = list(lst_x)
lst_y = list(lst_y)
plt.figure(1)
ax = plt.axes()
ax.scatter(lst_x, lst_y)
ax.set_xlabel('X')
ax.set_ylabel('Y')
plt.grid(True)
plt.show()
def plot_kmeans(all_data, k):
fig, ax = plt.subplots()
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_title(f'k={k}')
time_text = ax.text(0.05, 0.95, 'iter=0', horizontalalignment='left',
verticalalignment='top', transform=ax.transAxes)
plt.grid(True)
centroid_scatters = []
cluster_scatters = []
centroids, clusters = all_data[0]
for key in clusters:
lst_x, lst_y = zip(*clusters[key])
lst_x = list(lst_x)
lst_y = list(lst_y)
color = get_color(key/k)
cluster_scatters.append(ax.scatter(lst_x, lst_y, color=color))
centroid_scatters.append(ax.scatter([centroids[key][0]], [
centroids[key][1]], color=color, marker='X'))
def update_plot_kmeans(i):
centroids, clusters = all_data[i]
time_text.set_text(f'iter={i}')
for key in clusters:
centroid_scatters[key].set_offsets(centroids[key])
cluster_scatters[key].set_offsets(clusters[key])
return centroid_scatters+cluster_scatters+[time_text, ]
anim = FuncAnimation(fig, update_plot_kmeans,
frames=len(all_data), blit=True)
# anim.save('animation.mp4')
plt.show()
def calc_length(a, b):
# return ((b[0]-a[0])**2+(b[1]-a[1])**2)**0.5
# no need to calculate square root for comparison
return (b[0]-a[0])**2+(b[1]-a[1])**2
def init_centroids(data, k, method='forgy'): #TODO: Add k-means++ and Random Partition
match method:
case 'forgy':
return sample(data, k)
case _:
raise NotImplementedError(
f'method {method} is not implemented yet')
def calc_error(centroids, clusters, k):
squared_errors = []
for i in range(k):
cluster = np.array(clusters[i])
centroid = np.array([centroids[i] for _ in range(len(cluster))])
errors = centroid - cluster
squared_errors.append([e**2 for e in errors])
return sum([np.mean(err) for err in squared_errors])
def plot_error_data(error_data):
fig, ax = plt.subplots()
ax.set_xlabel('k')
ax.set_ylabel('err')
ax.set_xlim(2, 20)
plt.title('Errors')
plt.grid(True)
lst_x, lst_y = zip(*error_data)
lst_x = list(lst_x)
lst_y = list(lst_y)
ax.plot(lst_x, lst_y, 'ro-')
plt.show()
def main():
for get_data in [get_data1, get_data2]:
data = get_data()
plot_data(data)
kmeans_data = {}
for k in range(2, 21):
kmeans_with_err = []
for _ in range(100):
all_data = []
centroids = init_centroids(data, k)
clusters = {}
for i in range(k):
clusters[i] = []
for point in data:
lengths = [calc_length(c, point) for c in centroids]
index_min = np.argmin(lengths)
clusters[index_min].append(point)
all_data.append((list(centroids), clusters))
for _ in range(100):
for key in clusters:
if clusters[key]:
centroids[key] = np.mean(clusters[key], axis=0)
clusters = {}
for i in range(k):
clusters[i] = []
for point in data:
lengths = [calc_length(c, point) for c in centroids]
index_min = np.argmin(lengths)
clusters[index_min].append(point)
all_data.append((list(centroids), clusters))
if all([all(np.isclose(all_data[-1][0][i], all_data[-2][0][i])) for i in range(k)]):
break
err = calc_error(centroids, clusters, k)
kmeans_with_err.append((all_data, err))
min_err = kmeans_with_err[0][1]
kmeans = kmeans_with_err[0][0]
for temp_kmeans, err in kmeans_with_err:
if err < min_err:
min_err = err
kmeans = temp_kmeans
kmeans_data[k] = (kmeans, min_err)
plot_kmeans(kmeans, k)
error_data = [[i, kmeans_data[i][1]] for i in range(2, 21, 2)]
plot_error_data(error_data)
if __name__ == '__main__':
main()