98 lines
3.9 KiB
Python
98 lines
3.9 KiB
Python
import kmeans as km
|
|
import som
|
|
import numpy as np
|
|
import utils
|
|
import json
|
|
|
|
METHODS = ['forgy', 'random_partition']
|
|
SOM_INIT_METHODS = ['random', 'zeros']
|
|
SOM_ALGORITHMS = ['kohonen', 'neuron gas']
|
|
SOM_PARAMETERS_SETS = [(.1, .5), (.1, .5), (.1, 1), (.33, .1), (.33, .5), (.33, 1), (.66, .1), (.66, .5), (.66, 1),
|
|
(.99, .1), (.99, .5), (.99, 1)]
|
|
|
|
|
|
def get_datas_from_json():
|
|
datas = []
|
|
with open('data1.json', 'r') as d:
|
|
datas.append(json.loads(d.read()))
|
|
with open('data2.json', 'r') as d:
|
|
datas.append(json.loads(d.read()))
|
|
return datas
|
|
|
|
|
|
def get_datas_random():
|
|
datas = []
|
|
for get_data in [utils.get_data1, utils.get_data2]:
|
|
datas.append(get_data())
|
|
return datas
|
|
|
|
|
|
def main():
|
|
datas = get_datas_from_json()
|
|
benchmark_errors = False
|
|
rand = np.random.RandomState(0)
|
|
index = 1
|
|
print("Self-organizing map")
|
|
for data in datas:
|
|
print(f'Data set: {index}')
|
|
utils.plot_data(data)
|
|
for algorithm in SOM_ALGORITHMS:
|
|
print(f'Weights update algorithm: {algorithm}')
|
|
for method in SOM_INIT_METHODS:
|
|
print(f'Initialization method: {method}')
|
|
for param_set in SOM_PARAMETERS_SETS:
|
|
print(
|
|
f'Learn rate: {param_set[0]}, Radius square: {param_set[1]}')
|
|
errors = {}
|
|
for k in range(2, 21):
|
|
som_data = som.init_neurons(data, k, rand, method)
|
|
soms_with_error = som.train_som(som_data, data, learn_rate=param_set[0], radius_sq=param_set[1],
|
|
algorithm=algorithm)
|
|
error = soms_with_error[-1][1]
|
|
errors[k] = error
|
|
soms, _ = zip(*soms_with_error)
|
|
som.plot_with_data(
|
|
soms, data, f'_LR{param_set[0]}_RSQ{param_set[1]}_{algorithm}_{method}_neurons{k}_data{index}')
|
|
if all([i in errors for i in range(2, 21, 2)]):
|
|
fname = f'som_errors_data{index}_{SOM_PARAMETERS_SETS.index(param_set)}_{algorithm}_{method}.png'
|
|
utils.plot_error_data([(k, errors[k]) for k in range(2, 21, 2)], fname=fname)
|
|
if benchmark_errors:
|
|
soms_with_errors = []
|
|
for _ in range(100):
|
|
som_data = som.init_neurons(data, 20, rand, method)
|
|
soms_with_error = som.train_som(
|
|
som_data, data, algorithm=algorithm)
|
|
soms_with_errors.append(soms_with_error[-1])
|
|
som.print_som_stats(soms_with_errors, data)
|
|
index += 1
|
|
|
|
index = 1
|
|
for data in datas:
|
|
print(f'Data set {index}')
|
|
utils.plot_data(data)
|
|
for method in METHODS:
|
|
print(f'Method: {method}')
|
|
kmeans_data = {}
|
|
for k in range(2, 21):
|
|
kmeans_with_err = km.kmeans(data, method, k)
|
|
km.print_stats(k, [(iterations[-1], err)
|
|
for iterations, err in kmeans_with_err])
|
|
min_err = kmeans_with_err[0][1]
|
|
kmeans = kmeans_with_err[0][0]
|
|
for temp_kmeans, err in kmeans_with_err:
|
|
if err < min_err:
|
|
min_err = err
|
|
kmeans = temp_kmeans
|
|
kmeans_data[k] = (kmeans, min_err)
|
|
km.plot_kmeans(kmeans, k, f'_{method}_{k}_{index}')
|
|
if k in [2, 10]:
|
|
km.plot_kmeans_change(kmeans, k, f'_{method}_{k}_{index}')
|
|
if all([i in kmeans_data for i in range(2, 21, 2)]):
|
|
error_data = [[i, kmeans_data[i][1]] for i in range(2, 21, 2)]
|
|
utils.plot_error_data(error_data)
|
|
index += 1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|