# wdtagger [![CodeTime Badge](https://img.shields.io/endpoint?style=social&color=222&url=https%3A%2F%2Fapi.codetime.dev%2Fshield%3Fid%3D2%26project%3Dwdtagger%26in=0)](https://codetime.dev) `wdtagger` is a simple and easy-to-use wrapper for the tagger model created by [SmilingWolf](https://github.com/SmilingWolf) which is specifically designed for tagging anime illustrations. ## Installation You can install `wdtagger` via pip: ```bash pip install wdtagger ``` ## Usage Below is a basic example of how to use wdtagger in your project: ```python from PIL import Image from wdtagger import Tagger tagger = Tagger() # You can provide the model_repo, the default is "SmilingWolf/wd-swinv2-tagger-v3" image = Image.open("image.jpg") result = tagger.tag(image) print(result) ``` You can input a image list to the tagger to use batch processing, it is faster than single image processing (test on RTX 3090): ```log ---------------------------------------------------------------------------------- benchmark 'tagger': 5 tests ----------------------------------------------------------------------------------- Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- test_tagger_benchmark[16] 540.8711 (1.0) 598.5156 (1.04) 558.2777 (1.0) 22.2954 (4.10) 549.9650 (1.0) 21.7318 (2.51) 2;2 1.7912 (1.0) 10 1 test_tagger_benchmark[8] 558.9445 (1.03) 576.7220 (1.0) 567.9235 (1.02) 5.4381 (1.0) 568.7336 (1.03) 8.6569 (1.0) 2;0 1.7608 (0.98) 10 1 test_tagger_benchmark[4] 590.6479 (1.09) 626.7126 (1.09) 597.9712 (1.07) 11.0124 (2.03) 594.5067 (1.08) 10.7656 (1.24) 1;1 1.6723 (0.93) 10 1 test_tagger_benchmark[2] 622.8689 (1.15) 643.5122 (1.12) 630.1096 (1.13) 7.2365 (1.33) 627.1716 (1.14) 9.5823 (1.11) 3;0 1.5870 (0.89) 10 1 test_tagger_benchmark[1] 700.6986 (1.30) 816.3089 (1.42) 721.7431 (1.29) 33.9031 (6.23) 712.6850 (1.30) 12.8756 (1.49) 1;1 1.3855 (0.77) 10 1 -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- ```