Compare commits

...

8 Commits

Author SHA1 Message Date
Benjamin Sergeant
22fc8e981d do not run run the tsan + openssl test on ci 2020-05-03 22:16:14 -07:00
Benjamin Sergeant
fb0de53efd dummy commit 2020-05-03 19:09:23 -07:00
Benjamin Sergeant
62a7483e41 rename lua test file + fix C++ warnings 2020-04-28 22:22:45 -07:00
Benjamin Sergeant
36fbdd0daa can receive string message 2020-04-28 22:15:43 -07:00
Benjamin Sergeant
feff2e38c0 can send message, set a url and start the connection 2020-04-28 19:11:06 -07:00
Benjamin Sergeant
a040ff06e8 rename LuaPlayer.hpp to LuaWebSocket.h 2020-04-28 18:37:19 -07:00
Benjamin Sergeant
755493eaf3 test pre-commit 2020-04-28 14:39:01 -07:00
Benjamin Sergeant
4c61aede2e add skeleton lua bindings 2020-04-28 14:39:01 -07:00
13 changed files with 1800 additions and 9 deletions

View File

@ -19,15 +19,6 @@ jobs:
- name: make test_tsan
run: make test_tsan
mac_tsan_openssl:
runs-on: macOS-latest
steps:
- uses: actions/checkout@v1
- name: install openssl
run: brew install openssl@1.1
- name: make test
run: make test_tsan_openssl
mac_tsan_mbedtls:
runs-on: macOS-latest
steps:

View File

@ -251,3 +251,7 @@ if (USE_WS OR USE_TEST)
add_subdirectory(test)
endif()
endif()
if (USE_LUAROCKS)
add_subdirectory(luarocks)
endif()

30
luarocks/CMakeLists.txt Normal file
View File

@ -0,0 +1,30 @@
#
# Author: Benjamin Sergeant
# Copyright (c) 2020 Machine Zone, Inc. All rights reserved.
#
cmake_minimum_required (VERSION 3.4.1)
project (luarocks)
# There's -Weverything too for clang
if (NOT WIN32)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wextra -pedantic")
endif()
set (CMAKE_CXX_STANDARD 14)
option(USE_TLS "Add TLS support" ON)
include_directories(luarocks .)
add_executable(luarocks main.cpp)
include(FindLua)
find_package(lua REQUIRED)
target_link_libraries(luarocks ${LUA_LIBRARIES})
target_include_directories(luarocks PRIVATE ${LUA_INCLUDE_DIR})
# library with the most dependencies come first
target_link_libraries(luarocks ixwebsocket)
install(TARGETS luarocks RUNTIME DESTINATION bin)

163
luarocks/LuaWebSocket.h Normal file
View File

@ -0,0 +1,163 @@
/*
* LuaWebSocket.h
* Author: Benjamin Sergeant
* Copyright (c) 2020 Machine Zone, Inc. All rights reserved.
*/
#pragma once
#include <iostream>
#include <string>
extern "C"
{
#include "lua.h"
#include "lauxlib.h"
}
#include "luawrapper.hpp"
#include <ixwebsocket/IXWebSocket.h>
#include <chrono>
#include <thread>
#include <queue>
#include <mutex>
namespace ix
{
class LuaWebSocket
{
public:
LuaWebSocket()
{
_webSocket.setOnMessageCallback([this](const WebSocketMessagePtr& msg) {
if (msg->type == ix::WebSocketMessageType::Message)
{
std::lock_guard<std::mutex> lock(_queueMutex);
_queue.push(msg->str);
}
});
}
void setUrl(const std::string& url) { _webSocket.setUrl(url); }
const std::string& getUrl() { return _webSocket.getUrl(); }
void start() { _webSocket.start(); }
void send(const std::string& msg) { _webSocket.send(msg); }
const std::string& getMessage()
{
std::lock_guard<std::mutex> lock(_queueMutex);
return _queue.front();
}
bool hasMessage()
{
std::lock_guard<std::mutex> lock(_queueMutex);
return !_queue.empty();
}
void popMessage()
{
std::lock_guard<std::mutex> lock(_queueMutex);
_queue.pop();
}
private:
WebSocket _webSocket;
std::queue<std::string> _queue;
std::mutex _queueMutex;
};
LuaWebSocket* WebSocket_new(lua_State* /*L*/)
{
LuaWebSocket* webSocket = new LuaWebSocket();
return webSocket;
}
int WebSocket_getUrl(lua_State* L)
{
LuaWebSocket* luaWebSocket = luaW_check<LuaWebSocket>(L, 1);
lua_pushstring(L, luaWebSocket->getUrl().c_str());
return 1;
}
int WebSocket_setUrl(lua_State* L)
{
LuaWebSocket* luaWebSocket = luaW_check<LuaWebSocket>(L, 1);
const char* url = luaL_checkstring(L, 2);
luaWebSocket->setUrl(url);
return 0;
}
int WebSocket_start(lua_State* L)
{
LuaWebSocket* luaWebSocket = luaW_check<LuaWebSocket>(L, 1);
luaWebSocket->start();
return 0;
}
int WebSocket_send(lua_State* L)
{
LuaWebSocket* luaWebSocket = luaW_check<LuaWebSocket>(L, 1);
const char* msg = luaL_checkstring(L, 2);
luaWebSocket->send(msg);
return 0;
}
int WebSocket_getMessage(lua_State* L)
{
LuaWebSocket* luaWebSocket = luaW_check<LuaWebSocket>(L, 1);
lua_pushstring(L, luaWebSocket->getMessage().c_str());
return 1;
}
int WebSocket_hasMessage(lua_State* L)
{
LuaWebSocket* luaWebSocket = luaW_check<LuaWebSocket>(L, 1);
lua_pushboolean(L, luaWebSocket->hasMessage());
return 1;
}
int WebSocket_popMessage(lua_State* L)
{
LuaWebSocket* luaWebSocket = luaW_check<LuaWebSocket>(L, 1);
luaWebSocket->popMessage();
return 1;
}
// FIXME: This should be a static method, or be part of a different module
int WebSocket_sleep(lua_State* L)
{
// LuaWebSocket* luaWebSocket = luaW_check<LuaWebSocket>(L, 1);
auto duration = luaL_checkinteger(L, 2);
std::this_thread::sleep_for(std::chrono::milliseconds(duration));
return 0;
}
static luaL_Reg WebSocket_table[] = {
{ NULL, NULL }
};
static luaL_Reg WebSocket_metatable[] = {
{ "getUrl", WebSocket_getUrl },
{ "setUrl", WebSocket_setUrl },
{ "start", WebSocket_start },
{ "send", WebSocket_send },
{ "getMessage", WebSocket_getMessage },
{ "hasMessage", WebSocket_hasMessage },
{ "popMessage", WebSocket_popMessage },
{ "sleep", WebSocket_sleep },
{ NULL, NULL }
};
int luaopen_WebSocket(lua_State* L)
{
luaW_register<LuaWebSocket>(L,
"WebSocket",
WebSocket_table,
WebSocket_metatable,
WebSocket_new
);
return 1;
}
}

56
luarocks/Player.hpp Normal file
View File

@ -0,0 +1,56 @@
#ifndef PLAYER_HPP
#define PLAYER_HPP
#include <iostream>
class Player
{
public:
Player(const char* name, unsigned int health) :
m_Name(name),
m_Health(health)
{
}
void info()
{
std::cout << m_Name << " have " << m_Health << " HP" << std::endl;
}
void say(const char* text)
{
std::cout << m_Name << ": " << text << std::endl;
}
void heal(Player* target)
{
target->setHealth(100);
}
const char* getName()
{
return m_Name;
}
unsigned int getHealth()
{
return m_Health;
}
bool setHealth(unsigned int health)
{
if (health >= 0 && health <= 100)
{
m_Health = health;
return true;
}
else
return false;
}
private:
const char* m_Name;
unsigned int m_Health;
};
#endif // PLAYER_HPP

7
luarocks/README.md Normal file
View File

@ -0,0 +1,7 @@
Wrapper based on https://github.com/LuaxY/cpp-lua
Examples to build C++
https://github.com/siffiejoe/lua-fltk4lua/blob/master/fltk4lua-scm-0.rockspec
https://github.com/lua4web/refser/blob/master/rockspecs/refser-0.2-1.rockspec

30
luarocks/echo_client.lua Normal file
View File

@ -0,0 +1,30 @@
--
-- make luarocks && (cd luarocks ; ../build/luarocks/luarocks)
--
-- ... git push test with ssh key
--
local webSocket = WebSocket.new()
webSocket:setUrl("ws://localhost:8008")
print("Url: " .. webSocket:getUrl())
-- Start the background thread
webSocket:start()
local i = 0
while true
do
print("Sending message...")
webSocket:send("msg_" .. tostring(i));
i = i + 1
print("Waiting 1s...")
webSocket:sleep(1000)
if webSocket:hasMessage() then
local msg = webSocket:getMessage()
print("Received: " .. msg)
webSocket:popMessage()
end
end

15
luarocks/functions.hpp Normal file
View File

@ -0,0 +1,15 @@
/*
* functions.hpp
* Author: Benjamin Sergeant
* Copyright (c) 2020 Machine Zone, Inc. All rights reserved.
*/
#pragma once
#include <iostream>
int lua_info(lua_State* /*L*/)
{
std::cout << "C++ Lua v0.1" << std::endl << std::endl;
return 0;
}

709
luarocks/luawrapper.hpp Normal file
View File

@ -0,0 +1,709 @@
/*
* Copyright (c) 2010-2013 Alexander Ames
* Alexander.Ames@gmail.com
* See Copyright Notice at the end of this file
*/
// API Summary:
//
// LuaWrapper is a library designed to help bridge the gab between Lua and
// C++. It is designed to be small (a single header file), simple, fast,
// and typesafe. It has no external dependencies, and does not need to be
// precompiled; the header can simply be dropped into a project and used
// immediately. It even supports class inheritance to a certain degree. Objects
// can be created in either Lua or C++, and passed back and forth.
//
// The main functions of interest are the following:
// luaW_is<T>
// luaW_to<T>
// luaW_check<T>
// luaW_push<T>
// luaW_register<T>
// luaW_setfuncs<T>
// luaW_extend<T, U>
// luaW_hold<T>
// luaW_release<T>
//
// These functions allow you to manipulate arbitrary classes just like you
// would the primitive types (e.g. numbers or strings). If you are familiar
// with the normal Lua API the behavior of these functions should be very
// intuative.
//
// For more information see the README and the comments below
#ifndef LUA_WRAPPER_H_
#define LUA_WRAPPER_H_
// If you are linking against Lua compiled in C++, define LUAW_NO_EXTERN_C
#ifndef LUAW_NO_EXTERN_C
extern "C"
{
#endif // LUAW_NO_EXTERN_C
#include "lua.h"
#include "lauxlib.h"
#ifndef LUAW_NO_EXTERN_C
}
#endif // LUAW_NO_EXTERN_C
#define LUAW_POSTCTOR_KEY "__postctor"
#define LUAW_EXTENDS_KEY "__extends"
#define LUAW_STORAGE_KEY "storage"
#define LUAW_CACHE_KEY "cache"
#define LUAW_CACHE_METATABLE_KEY "cachemetatable"
#define LUAW_HOLDS_KEY "holds"
#define LUAW_WRAPPER_KEY "LuaWrapper"
// A simple utility function to adjust a given index
// Useful for when a parameter index needs to be adjusted
// after pushing or popping things off the stack
inline int luaW_correctindex(lua_State* /*L*/, int index, int correction)
{
return index < 0 ? index - correction : index;
}
// These are the default allocator and deallocator. If you would prefer an
// alternative option, you may select a different function when registering
// your class.
template <typename T>
T* luaW_defaultallocator(lua_State*)
{
return new T();
}
template <typename T>
void luaW_defaultdeallocator(lua_State*, T* obj)
{
delete obj;
}
// The identifier function is responsible for pushing a value unique to each
// object on to the stack. Most of the time, this can simply be the address
// of the pointer, but sometimes that is not adaquate. For example, if you
// are using shared_ptr you would need to push the address of the object the
// shared_ptr represents, rather than the address of the shared_ptr itself.
template <typename T>
void luaW_defaultidentifier(lua_State* L, T* obj)
{
lua_pushlightuserdata(L, obj);
}
// This class is what is used by LuaWrapper to contain the userdata. data
// stores a pointer to the object itself, and cast is used to cast toward the
// base class if there is one and it is necessary. Rather than use RTTI and
// typid to compare types, I use the clever trick of using the cast to compare
// types. Because there is at most one cast per type, I can use it to identify
// when and object is the type I want. This is only used internally.
struct luaW_Userdata
{
luaW_Userdata(void* vptr = NULL, luaW_Userdata (*udcast)(const luaW_Userdata&) = NULL)
: data(vptr), cast(udcast) {}
void* data;
luaW_Userdata (*cast)(const luaW_Userdata&);
};
// This class cannot actually to be instantiated. It is used only hold the
// table name and other information.
template <typename T>
class LuaWrapper
{
public:
static const char* classname;
static void (*identifier)(lua_State*, T*);
static T* (*allocator)(lua_State*);
static void (*deallocator)(lua_State*, T*);
static luaW_Userdata (*cast)(const luaW_Userdata&);
private:
LuaWrapper();
};
template <typename T> const char* LuaWrapper<T>::classname;
template <typename T> void (*LuaWrapper<T>::identifier)(lua_State*, T*);
template <typename T> T* (*LuaWrapper<T>::allocator)(lua_State*);
template <typename T> void (*LuaWrapper<T>::deallocator)(lua_State*, T*);
template <typename T> luaW_Userdata (*LuaWrapper<T>::cast)(const luaW_Userdata&);
// Cast from an object of type T to an object of type U. This template
// function is instantiated by calling luaW_extend<T, U>(L). This is only used
// internally.
template <typename T, typename U>
luaW_Userdata luaW_cast(const luaW_Userdata& obj)
{
return luaW_Userdata(static_cast<U*>(static_cast<T*>(obj.data)), LuaWrapper<U>::cast);
}
template <typename T, typename U>
void luaW_identify(lua_State* L, T* obj)
{
LuaWrapper<U>::identifier(L, static_cast<U*>(obj));
}
template <typename T>
inline void luaW_wrapperfield(lua_State* L, const char* field)
{
lua_getfield(L, LUA_REGISTRYINDEX, LUAW_WRAPPER_KEY); // ... LuaWrapper
lua_getfield(L, -1, field); // ... LuaWrapper LuaWrapper.field
lua_getfield(L, -1, LuaWrapper<T>::classname); // ... LuaWrapper LuaWrapper.field LuaWrapper.field.class
lua_replace(L, -3); // ... LuaWrapper.field.class LuaWrapper.field
lua_pop(L, 1); // ... LuaWrapper.field.class
}
// Analogous to lua_is(boolean|string|*)
//
// Returns 1 if the value at the given acceptable index is of type T (or if
// strict is false, convertable to type T) and 0 otherwise.
template <typename T>
bool luaW_is(lua_State *L, int index, bool strict = false)
{
bool equal = false;// lua_isnil(L, index);
if (!equal && lua_isuserdata(L, index) && lua_getmetatable(L, index))
{
// ... ud ... udmt
luaL_getmetatable(L, LuaWrapper<T>::classname); // ... ud ... udmt Tmt
equal = lua_rawequal(L, -1, -2) != 0;
if (!equal && !strict)
{
lua_getfield(L, -2, LUAW_EXTENDS_KEY); // ... ud ... udmt Tmt udmt.extends
for (lua_pushnil(L); lua_next(L, -2); lua_pop(L, 1))
{
// ... ud ... udmt Tmt udmt.extends k v
equal = lua_rawequal(L, -1, -4) != 0;
if (equal)
{
lua_pop(L, 2); // ... ud ... udmt Tmt udmt.extends
break;
}
}
lua_pop(L, 1); // ... ud ... udmt Tmt
}
lua_pop(L, 2); // ... ud ...
}
return equal;
}
// Analogous to lua_to(boolean|string|*)
//
// Converts the given acceptable index to a T*. That value must be of (or
// convertable to) type T; otherwise, returns NULL.
template <typename T>
T* luaW_to(lua_State* L, int index, bool strict = false)
{
if (luaW_is<T>(L, index, strict))
{
luaW_Userdata* pud = static_cast<luaW_Userdata*>(lua_touserdata(L, index));
luaW_Userdata ud;
while (!strict && LuaWrapper<T>::cast != pud->cast)
{
ud = pud->cast(*pud);
pud = &ud;
}
return static_cast<T*>(pud->data);
}
return NULL;
}
// Analogous to luaL_check(boolean|string|*)
//
// Converts the given acceptable index to a T*. That value must be of (or
// convertable to) type T; otherwise, an error is raised.
template <typename T>
T* luaW_check(lua_State* L, int index, bool strict = false)
{
T* obj = NULL;
if (luaW_is<T>(L, index, strict))
{
luaW_Userdata* pud = (luaW_Userdata*)lua_touserdata(L, index);
luaW_Userdata ud;
while (!strict && LuaWrapper<T>::cast != pud->cast)
{
ud = pud->cast(*pud);
pud = &ud;
}
obj = (T*)pud->data;
}
else
{
const char *msg = lua_pushfstring(L, "%s expected, got %s", LuaWrapper<T>::classname, luaL_typename(L, index));
luaL_argerror(L, index, msg);
}
return obj;
}
template <typename T>
T* luaW_opt(lua_State* L, int index, T* fallback = NULL, bool strict = false)
{
if (lua_isnil(L, index))
return fallback;
else
return luaW_check<T>(L, index, strict);
}
// Analogous to lua_push(boolean|string|*)
//
// Pushes a userdata of type T onto the stack. If this object already exists in
// the Lua environment, it will assign the existing storage table to it.
// Otherwise, a new storage table will be created for it.
template <typename T>
void luaW_push(lua_State* L, T* obj)
{
if (obj)
{
LuaWrapper<T>::identifier(L, obj); // ... id
luaW_wrapperfield<T>(L, LUAW_CACHE_KEY); // ... id cache
lua_pushvalue(L, -2); // ... id cache id
lua_gettable(L, -2); // ... id cache obj
if (lua_isnil(L, -1))
{
// Create the new luaW_userdata and place it in the cache
lua_pop(L, 1); // ... id cache
lua_insert(L, -2); // ... cache id
luaW_Userdata* ud = static_cast<luaW_Userdata*>(lua_newuserdata(L, sizeof(luaW_Userdata))); // ... cache id obj
ud->data = obj;
ud->cast = LuaWrapper<T>::cast;
lua_pushvalue(L, -1); // ... cache id obj obj
lua_insert(L, -4); // ... obj cache id obj
lua_settable(L, -3); // ... obj cache
luaL_getmetatable(L, LuaWrapper<T>::classname); // ... obj cache mt
lua_setmetatable(L, -3); // ... obj cache
lua_pop(L, 1); // ... obj
}
else
{
lua_replace(L, -3); // ... obj cache
lua_pop(L, 1); // ... obj
}
}
else
{
lua_pushnil(L);
}
}
// Instructs LuaWrapper that it owns the userdata, and can manage its memory.
// When all references to the object are removed, Lua is free to garbage
// collect it and delete the object.
//
// Returns true if luaW_hold took hold of the object, and false if it was
// already held
template <typename T>
bool luaW_hold(lua_State* L, T* obj)
{
luaW_wrapperfield<T>(L, LUAW_HOLDS_KEY); // ... holds
LuaWrapper<T>::identifier(L, obj); // ... holds id
lua_pushvalue(L, -1); // ... holds id id
lua_gettable(L, -3); // ... holds id hold
// If it's not held, hold it
if (!lua_toboolean(L, -1))
{
// Apply hold boolean
lua_pop(L, 1); // ... holds id
lua_pushboolean(L, true); // ... holds id true
lua_settable(L, -3); // ... holds
lua_pop(L, 1); // ...
return true;
}
lua_pop(L, 3); // ...
return false;
}
// Releases LuaWrapper's hold on an object. This allows the user to remove
// all references to an object in Lua and ensure that Lua will not attempt to
// garbage collect it.
//
// This function takes the index of the identifier for an object rather than
// the object itself. This is because needs to be able to run after the object
// has already been deallocated. A wrapper is provided for when it is more
// convenient to pass in the object directly.
template <typename T>
void luaW_release(lua_State* L, int index)
{
luaW_wrapperfield<T>(L, LUAW_HOLDS_KEY); // ... id ... holds
lua_pushvalue(L, luaW_correctindex(L, index, 1)); // ... id ... holds id
lua_pushnil(L); // ... id ... holds id nil
lua_settable(L, -3); // ... id ... holds
lua_pop(L, 1); // ... id ...
}
template <typename T>
void luaW_release(lua_State* L, T* obj)
{
LuaWrapper<T>::identifier(L, obj); // ... id
luaW_release<T>(L, -1); // ... id
lua_pop(L, 1); // ...
}
// This function is called from Lua, not C++
//
// Calls the lua post-constructor (LUAW_POSTCTOR_KEY or "__postctor") on a
// userdata. Assumes the userdata is on top of the stack, and numargs arguments
// are below it. This runs the LUAW_POSTCTOR_KEY function on T's metatable,
// using the object as the first argument and whatever else is below it as
// the rest of the arguments This exists to allow types to adjust values in
// thier storage table, which can not be created until after the constructor is
// called.
template <typename T>
void luaW_postconstructor(lua_State* L, int numargs)
{
// ... args... ud
lua_getfield(L, -1, LUAW_POSTCTOR_KEY); // ... args... ud ud.__postctor
if (lua_type(L, -1) == LUA_TFUNCTION)
{
lua_pushvalue(L, -2); // ... args... ud ud.__postctor ud
lua_insert(L, -3 - numargs); // ... ud args... ud ud.__postctor
lua_insert(L, -3 - numargs); // ... ud.__postctor ud args... ud
lua_insert(L, -3 - numargs); // ... ud ud.__postctor ud args...
lua_call(L, numargs + 1, 0); // ... ud
}
else
{
lua_pop(L, 1); // ... ud
}
}
// This function is generally called from Lua, not C++
//
// Creates an object of type T using the constructor and subsequently calls the
// post-constructor on it.
template <typename T>
inline int luaW_new(lua_State* L, int args)
{
T* obj = LuaWrapper<T>::allocator(L);
luaW_push<T>(L, obj);
luaW_hold<T>(L, obj);
luaW_postconstructor<T>(L, args);
return 1;
}
template <typename T>
int luaW_new(lua_State* L)
{
return luaW_new<T>(L, lua_gettop(L));
}
// This function is called from Lua, not C++
//
// The default metamethod to call when indexing into lua userdata representing
// an object of type T. This will first check the userdata's environment table
// and if it's not found there it will check the metatable. This is done so
// individual userdata can be treated as a table, and can hold thier own
// values.
template <typename T>
int luaW_index(lua_State* L)
{
// obj key
T* obj = luaW_to<T>(L, 1);
luaW_wrapperfield<T>(L, LUAW_STORAGE_KEY); // obj key storage
LuaWrapper<T>::identifier(L, obj); // obj key storage id
lua_gettable(L, -2); // obj key storage store
// Check if storage table exists
if (!lua_isnil(L, -1))
{
lua_pushvalue(L, -3); // obj key storage store key
lua_gettable(L, -2); // obj key storage store store[k]
}
// If either there is no storage table or the key wasn't found
// then fall back to the metatable
if (lua_isnil(L, -1))
{
lua_settop(L, 2); // obj key
lua_getmetatable(L, -2); // obj key mt
lua_pushvalue(L, -2); // obj key mt k
lua_gettable(L, -2); // obj key mt mt[k]
}
return 1;
}
// This function is called from Lua, not C++
//
// The default metamethod to call when creating a new index on lua userdata
// representing an object of type T. This will index into the the userdata's
// environment table that it keeps for personal storage. This is done so
// individual userdata can be treated as a table, and can hold thier own
// values.
template <typename T>
int luaW_newindex(lua_State* L)
{
// obj key value
T* obj = luaW_check<T>(L, 1);
luaW_wrapperfield<T>(L, LUAW_STORAGE_KEY); // obj key value storage
LuaWrapper<T>::identifier(L, obj); // obj key value storage id
lua_pushvalue(L, -1); // obj key value storage id id
lua_gettable(L, -3); // obj key value storage id store
// Add the storage table if there isn't one already
if (lua_isnil(L, -1))
{
lua_pop(L, 1); // obj key value storage id
lua_newtable(L); // obj key value storage id store
lua_pushvalue(L, -1); // obj key value storage id store store
lua_insert(L, -3); // obj key value storage store id store
lua_settable(L, -4); // obj key value storage store
}
lua_pushvalue(L, 2); // obj key value ... store key
lua_pushvalue(L, 3); // obj key value ... store key value
lua_settable(L, -3); // obj key value ... store
return 0;
}
// This function is called from Lua, not C++
//
// The __gc metamethod handles cleaning up userdata. The userdata's reference
// count is decremented and if this is the final reference to the userdata its
// environment table is nil'd and pointer deleted with the destructor callback.
template <typename T>
int luaW_gc(lua_State* L)
{
// obj
T* obj = luaW_to<T>(L, 1);
LuaWrapper<T>::identifier(L, obj); // obj key value storage id
luaW_wrapperfield<T>(L, LUAW_HOLDS_KEY); // obj id counts count holds
lua_pushvalue(L, 2); // obj id counts count holds id
lua_gettable(L, -2); // obj id counts count holds hold
if (lua_toboolean(L, -1) && LuaWrapper<T>::deallocator)
{
LuaWrapper<T>::deallocator(L, obj);
}
luaW_wrapperfield<T>(L, LUAW_STORAGE_KEY); // obj id counts count holds hold storage
lua_pushvalue(L, 2); // obj id counts count holds hold storage id
lua_pushnil(L); // obj id counts count holds hold storage id nil
lua_settable(L, -3); // obj id counts count holds hold storage
luaW_release<T>(L, 2);
return 0;
}
// Thakes two tables and registers them with Lua to the table on the top of the
// stack.
//
// This function is only called from LuaWrapper internally.
inline void luaW_registerfuncs(lua_State* L, const luaL_Reg defaulttable[], const luaL_Reg table[])
{
// ... T
#if LUA_VERSION_NUM > 501
if (defaulttable)
luaL_setfuncs(L, defaulttable, 0); // ... T
if (table)
luaL_setfuncs(L, table, 0); // ... T
#else
if (defaulttable)
luaL_register(L, NULL, defaulttable); // ... T
if (table)
luaL_register(L, NULL, table); // ... T
#endif
}
// Initializes the LuaWrapper tables used to track internal state.
//
// This function is only called from LuaWrapper internally.
inline void luaW_initialize(lua_State* L)
{
// Ensure that the LuaWrapper table is set up
lua_getfield(L, LUA_REGISTRYINDEX, LUAW_WRAPPER_KEY); // ... LuaWrapper
if (lua_isnil(L, -1))
{
lua_newtable(L); // ... nil {}
lua_pushvalue(L, -1); // ... nil {} {}
lua_setfield(L, LUA_REGISTRYINDEX, LUAW_WRAPPER_KEY); // ... nil LuaWrapper
// Create a storage table
lua_newtable(L); // ... LuaWrapper nil {}
lua_setfield(L, -2, LUAW_STORAGE_KEY); // ... nil LuaWrapper
// Create a holds table
lua_newtable(L); // ... LuaWrapper {}
lua_setfield(L, -2, LUAW_HOLDS_KEY); // ... nil LuaWrapper
// Create a cache table, with weak values so that the userdata will not
// be ref counted
lua_newtable(L); // ... nil LuaWrapper {}
lua_setfield(L, -2, LUAW_CACHE_KEY); // ... nil LuaWrapper
lua_newtable(L); // ... nil LuaWrapper {}
lua_pushstring(L, "v"); // ... nil LuaWrapper {} "v"
lua_setfield(L, -2, "__mode"); // ... nil LuaWrapper {}
lua_setfield(L, -2, LUAW_CACHE_METATABLE_KEY); // ... nil LuaWrapper
lua_pop(L, 1); // ... nil
}
lua_pop(L, 1); // ...
}
// Run luaW_register or luaW_setfuncs to create a table and metatable for your
// class. These functions create a table with filled with the function from
// the table argument in addition to the functions new and build (This is
// generally for things you think of as static methods in C++). The given
// metatable argument becomes a metatable for each object of your class. These
// can be thought of as member functions or methods.
//
// You may also supply constructors and destructors for classes that do not
// have a default constructor or that require special set up or tear down. You
// may specify NULL as the constructor, which means that you will not be able
// to call the new function on your class table. You will need to manually push
// objects from C++. By default, the default constructor is used to create
// objects and a simple call to delete is used to destroy them.
//
// By default LuaWrapper uses the address of C++ object to identify unique
// objects. In some cases this is not desired, such as in the case of
// shared_ptrs. Two shared_ptrs may themselves have unique locations in memory
// but still represent the same object. For cases like that, you may specify an
// identifier function which is responsible for pushing a key representing your
// object on to the stack.
//
// luaW_register will set table as the new value of the global of the given
// name. luaW_setfuncs is identical to luaW_register, but it does not set the
// table globally. As with luaL_register and luaL_setfuncs, both funcstions
// leave the new table on the top of the stack.
template <typename T>
void luaW_setfuncs(lua_State* L, const char* classname, const luaL_Reg* table, const luaL_Reg* metatable, T* (*allocator)(lua_State*) = luaW_defaultallocator<T>, void (*deallocator)(lua_State*, T*) = luaW_defaultdeallocator<T>, void (*identifier)(lua_State*, T*) = luaW_defaultidentifier<T>)
{
luaW_initialize(L);
LuaWrapper<T>::classname = classname;
LuaWrapper<T>::identifier = identifier;
LuaWrapper<T>::allocator = allocator;
LuaWrapper<T>::deallocator = deallocator;
const luaL_Reg defaulttable[] =
{
{ "new", luaW_new<T> },
{ NULL, NULL }
};
const luaL_Reg defaultmetatable[] =
{
{ "__index", luaW_index<T> },
{ "__newindex", luaW_newindex<T> },
{ "__gc", luaW_gc<T> },
{ NULL, NULL }
};
// Set up per-type tables
lua_getfield(L, LUA_REGISTRYINDEX, LUAW_WRAPPER_KEY); // ... LuaWrapper
lua_getfield(L, -1, LUAW_STORAGE_KEY); // ... LuaWrapper LuaWrapper.storage
lua_newtable(L); // ... LuaWrapper LuaWrapper.storage {}
lua_setfield(L, -2, LuaWrapper<T>::classname); // ... LuaWrapper LuaWrapper.storage
lua_pop(L, 1); // ... LuaWrapper
lua_getfield(L, -1, LUAW_HOLDS_KEY); // ... LuaWrapper LuaWrapper.holds
lua_newtable(L); // ... LuaWrapper LuaWrapper.holds {}
lua_setfield(L, -2, LuaWrapper<T>::classname); // ... LuaWrapper LuaWrapper.holds
lua_pop(L, 1); // ... LuaWrapper
lua_getfield(L, -1, LUAW_CACHE_KEY); // ... LuaWrapper LuaWrapper.cache
lua_newtable(L); // ... LuaWrapper LuaWrapper.cache {}
luaW_wrapperfield<T>(L, LUAW_CACHE_METATABLE_KEY); // ... LuaWrapper LuaWrapper.cache {} cmt
lua_setmetatable(L, -2); // ... LuaWrapper LuaWrapper.cache {}
lua_setfield(L, -2, LuaWrapper<T>::classname); // ... LuaWrapper LuaWrapper.cache
lua_pop(L, 2); // ...
// Open table
lua_newtable(L); // ... T
luaW_registerfuncs(L, allocator ? defaulttable : NULL, table); // ... T
// Open metatable, set up extends table
luaL_newmetatable(L, classname); // ... T mt
lua_newtable(L); // ... T mt {}
lua_setfield(L, -2, LUAW_EXTENDS_KEY); // ... T mt
luaW_registerfuncs(L, defaultmetatable, metatable); // ... T mt
lua_setfield(L, -2, "metatable"); // ... T
}
template <typename T>
void luaW_register(lua_State* L, const char* classname, const luaL_Reg* table, const luaL_Reg* metatable, T* (*allocator)(lua_State*) = luaW_defaultallocator<T>, void (*deallocator)(lua_State*, T*) = luaW_defaultdeallocator<T>, void (*identifier)(lua_State*, T*) = luaW_defaultidentifier<T>)
{
luaW_setfuncs(L, classname, table, metatable, allocator, deallocator, identifier); // ... T
lua_pushvalue(L, -1); // ... T T
lua_setglobal(L, classname); // ... T
}
// luaW_extend is used to declare that class T inherits from class U. All
// functions in the base class will be available to the derived class (except
// when they share a function name, in which case the derived class's function
// wins). This also allows luaW_to<T> to cast your object apropriately, as
// casts straight through a void pointer do not work.
template <typename T, typename U>
void luaW_extend(lua_State* L)
{
if(!LuaWrapper<T>::classname)
luaL_error(L, "attempting to call extend on a type that has not been registered");
if(!LuaWrapper<U>::classname)
luaL_error(L, "attempting to extend %s by a type that has not been registered", LuaWrapper<T>::classname);
LuaWrapper<T>::cast = luaW_cast<T, U>;
LuaWrapper<T>::identifier = luaW_identify<T, U>;
luaL_getmetatable(L, LuaWrapper<T>::classname); // mt
luaL_getmetatable(L, LuaWrapper<U>::classname); // mt emt
// Point T's metatable __index at U's metatable for inheritance
lua_newtable(L); // mt emt {}
lua_pushvalue(L, -2); // mt emt {} emt
lua_setfield(L, -2, "__index"); // mt emt {}
lua_setmetatable(L, -3); // mt emt
// Set up per-type tables to point at parent type
lua_getfield(L, LUA_REGISTRYINDEX, LUAW_WRAPPER_KEY); // ... LuaWrapper
lua_getfield(L, -1, LUAW_STORAGE_KEY); // ... LuaWrapper LuaWrapper.storage
lua_getfield(L, -1, LuaWrapper<U>::classname); // ... LuaWrapper LuaWrapper.storage U
lua_setfield(L, -2, LuaWrapper<T>::classname); // ... LuaWrapper LuaWrapper.storage
lua_pop(L, 1); // ... LuaWrapper
lua_getfield(L, -1, LUAW_HOLDS_KEY); // ... LuaWrapper LuaWrapper.holds
lua_getfield(L, -1, LuaWrapper<U>::classname); // ... LuaWrapper LuaWrapper.holds U
lua_setfield(L, -2, LuaWrapper<T>::classname); // ... LuaWrapper LuaWrapper.holds
lua_pop(L, 1); // ... LuaWrapper
lua_getfield(L, -1, LUAW_CACHE_KEY); // ... LuaWrapper LuaWrapper.cache
lua_getfield(L, -1, LuaWrapper<U>::classname); // ... LuaWrapper LuaWrapper.cache U
lua_setfield(L, -2, LuaWrapper<T>::classname); // ... LuaWrapper LuaWrapper.cache
lua_pop(L, 2); // ...
// Make a list of all types that inherit from U, for type checking
lua_getfield(L, -2, LUAW_EXTENDS_KEY); // mt emt mt.extends
lua_pushvalue(L, -2); // mt emt mt.extends emt
lua_setfield(L, -2, LuaWrapper<U>::classname); // mt emt mt.extends
lua_getfield(L, -2, LUAW_EXTENDS_KEY); // mt emt mt.extends emt.extends
for (lua_pushnil(L); lua_next(L, -2); lua_pop(L, 1))
{
// mt emt mt.extends emt.extends k v
lua_pushvalue(L, -2); // mt emt mt.extends emt.extends k v k
lua_pushvalue(L, -2); // mt emt mt.extends emt.extends k v k
lua_rawset(L, -6); // mt emt mt.extends emt.extends k v
}
lua_pop(L, 4); // mt emt
}
/*
* Copyright (c) 2010-2013 Alexander Ames
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#endif // LUA_WRAPPER_H_

714
luarocks/luawrapperutil.hpp Normal file
View File

@ -0,0 +1,714 @@
/*
* Copyright (c) 2010-2013 Alexander Ames
* Alexander.Ames@gmail.com
* See Copyright Notice at the end of this file
*/
// API Summary:
//
// This is a set of utility functions that add to the functionalit of
// LuaWrapper. Over time I found myself repeating a few patterns, such as
// writing many trvial getter and setter functions, and wanting pass ownership
// of one object to another and have the Lua script properly handle that case.
//
// This file contains the additional functions that I've added but that do
// not really belong in the core API.
#ifndef LUAWRAPPERUTILS_HPP_
#define LUAWRAPPERUTILS_HPP_
#include "luawrapper.hpp"
#ifndef LUAW_NO_CXX11
#include <type_traits>
#endif
#ifndef LUAW_STD
#define LUAW_STD std
#endif
////////////////////////////////////////////////////////////////////////////////
//
// A set of templated luaL_check and lua_push functions for use in the getters
// and setters below
//
// It is often useful to override luaU_check, luaU_to and/or luaU_push to
// operate on your own simple types rather than register your type with
// LuaWrapper, especially with small objects.
//
template<typename U, typename = void>
struct luaU_Impl
{
static U luaU_check(lua_State* L, int index);
static U luaU_to (lua_State* L, int index);
static void luaU_push (lua_State* L, const U& value);
static void luaU_push (lua_State* L, U& value);
};
template<typename U> U luaU_check(lua_State* L, int index) { return luaU_Impl<U>::luaU_check(L, index); }
template<typename U> U luaU_to (lua_State* L, int index) { return luaU_Impl<U>::luaU_to (L, index); }
template<typename U> void luaU_push (lua_State* L, const U& value) { luaU_Impl<U>::luaU_push (L, value); }
template<typename U> void luaU_push (lua_State* L, U& value) { luaU_Impl<U>::luaU_push (L, value); }
////////////////////////////////////////////////////////////////////////////////
//
// This is slightly different than the previous three functions in that you
// shouldn't need to write your own version of it, since it uses luaU_check
// automatically.
//
template<typename U>
U luaU_opt(lua_State* L, int index, const U& fallback = U())
{
if (lua_isnil(L, index))
return fallback;
else
return luaU_Impl<U>::luaU_check(L, index);
}
template<>
struct luaU_Impl<bool>
{
static bool luaU_check(lua_State* L, int index) { return lua_toboolean (L, index) != 0; }
static bool luaU_to (lua_State* L, int index) { return lua_toboolean (L, index) != 0; }
static void luaU_push (lua_State* L, const bool& value) { lua_pushboolean(L, value); }
};
template<>
struct luaU_Impl<const char*>
{
static const char* luaU_check(lua_State* L, int index) { return luaL_checkstring(L, index); }
static const char* luaU_to (lua_State* L, int index) { return lua_tostring (L, index); }
static void luaU_push (lua_State* L, const char* const& value) { lua_pushstring (L, value); }
};
template<>
struct luaU_Impl<unsigned int>
{
static unsigned int luaU_check(lua_State* L, int index) { return static_cast<unsigned int>(luaL_checkinteger(L, index)); }
static unsigned int luaU_to (lua_State* L, int index) { return static_cast<unsigned int>(lua_tointeger (L, index)); }
static void luaU_push (lua_State* L, const unsigned int& value) { lua_pushinteger (L, value); }
};
template<>
struct luaU_Impl<int>
{
static int luaU_check(lua_State* L, int index) { return static_cast<int>(luaL_checkinteger(L, index)); }
static int luaU_to (lua_State* L, int index) { return static_cast<int>(lua_tointeger (L, index)); }
static void luaU_push (lua_State* L, const int& value) { lua_pushinteger (L, value); }
};
template<>
struct luaU_Impl<unsigned char>
{
static unsigned char luaU_check(lua_State* L, int index) { return static_cast<unsigned char>(luaL_checkinteger(L, index)); }
static unsigned char luaU_to (lua_State* L, int index) { return static_cast<unsigned char>(lua_tointeger (L, index)); }
static void luaU_push (lua_State* L, const unsigned char& value) { lua_pushinteger (L, value); }
};
template<>
struct luaU_Impl<char>
{
static char luaU_check(lua_State* L, int index) { return static_cast<char>(luaL_checkinteger(L, index)); }
static char luaU_to (lua_State* L, int index) { return static_cast<char>(lua_tointeger (L, index)); }
static void luaU_push (lua_State* L, const char& value) { lua_pushinteger (L, value); }
};
template<>
struct luaU_Impl<float>
{
static float luaU_check(lua_State* L, int index) { return static_cast<float>(luaL_checknumber(L, index)); }
static float luaU_to (lua_State* L, int index) { return static_cast<float>(lua_tonumber (L, index)); }
static void luaU_push (lua_State* L, const float& value) { lua_pushnumber (L, value); }
};
template<>
struct luaU_Impl<double>
{
static double luaU_check(lua_State* L, int index) { return static_cast<double>(luaL_checknumber(L, index)); }
static double luaU_to (lua_State* L, int index) { return static_cast<double>(lua_tonumber (L, index)); }
static void luaU_push (lua_State* L, const double& value) { lua_pushnumber (L, value); }
};
#ifndef LUAW_NO_CXX11
template<typename T>
struct luaU_Impl<T, typename LUAW_STD::enable_if<LUAW_STD::is_enum<T>::value>::type>
{
static T luaU_check(lua_State* L, int index) { return static_cast<T>(luaL_checkinteger (L, index)); }
static T luaU_to (lua_State* L, int index) { return static_cast<T>(lua_tointeger (L, index)); }
static void luaU_push (lua_State* L, const T& value) { lua_pushnumber(L, static_cast<int>(value )); }
};
template<typename T>
struct luaU_Impl<T*, typename LUAW_STD::enable_if<LUAW_STD::is_class<T>::value>::type>
{
static T* luaU_check( lua_State* L, int index) { return luaW_check<T>(L, index); }
static T* luaU_to ( lua_State* L, int index) { return luaW_to <T>(L, index); }
static void luaU_push ( lua_State* L, T*& value) { luaW_push <T>(L, value); }
static void luaU_push ( lua_State* L, T* value) { luaW_push <T>(L, value); }
};
#endif
///////////////////////////////////////////////////////////////////////////////
//
// These are just some functions I've always felt should exist
//
template <typename U>
inline U luaU_getfield(lua_State* L, int index, const char* field)
{
#ifndef LUAW_NO_CXX11
static_assert(!std::is_same<U, const char*>::value,
"luaU_getfield is not safe to use on const char*'s. (The string will be popped from the stack.)");
#endif
lua_getfield(L, index, field);
U val = luaU_to<U>(L, -1);
lua_pop(L, 1);
return val;
}
template <typename U>
inline U luaU_checkfield(lua_State* L, int index, const char* field)
{
#ifndef LUAW_NO_CXX11
static_assert(!std::is_same<U, const char*>::value,
"luaU_checkfield is not safe to use on const char*'s. (The string will be popped from the stack.)");
#endif
lua_getfield(L, index, field);
U val = luaU_check<U>(L, -1);
lua_pop(L, 1);
return val;
}
template <typename U>
inline void luaU_setfield(lua_State* L, int index, const char* field, U val)
{
luaU_push<U>(L, val);
lua_setfield(L, luaW_correctindex(L, index, 1), field);
}
///////////////////////////////////////////////////////////////////////////////
//
// A set of trivial getter and setter templates. These templates are designed
// to call trivial getters or setters.
//
// There are four forms:
// 1. Getting or setting a public member variable that is of a primitive type
// 2. Getting or setting a public member variable that is a pointer to an
// object
// 3. Getting or setting a private member variable that is of a primitive type
// through a getter or setter
// 3. Getting or setting a private member variable that is is a pointer to an
// object through a getter or setter
//
// The interface to all of them is the same however. In addition to plain
// getter and setter functions, there is a getset which does both - if an
// argument is supplied it attempts to set the value, and in either case it
// returns the value. In your lua table declaration in C++ rather than write
// individiual wrappers for each getter and setter you may do the following:
//
// static luaL_reg Foo_metatable[] =
// {
// { "GetBar", luaU_get<Foo, bool, &Widget::GetBar> },
// { "SetBar", luaU_set<Foo, bool, &Widget::SetBar> },
// { "Bar", luaU_getset<Foo, bool, &Widget::GetBar, &Widget::SetBar> },
// { NULL, NULL }
// }
//
// Getters and setters must have one of the following signatures:
// void T::Setter(U value);
// void T::Setter(U* value);
// void T::Setter(const U& value);
// U Getter() const;
// U* Getter() const;
//
// In this example, the variable Foo::bar is private and so it is accessed
// through getter and setter functions. If Foo::bar were public, it could be
// accessed directly, like so:
//
// static luaL_reg Foo_metatable[] =
// {
// { "GetBar", luaU_get<Foo, bool, &Widget::bar> },
// { "SetBar", luaU_set<Foo, bool, &Widget::bar> },
// { "Bar", luaU_getset<Foo, bool, &Widget::bar> },
// }
//
// In a Lua script, you can now use foo:GetBar(), foo:SetBar() and foo:Bar()
//
template <typename T, typename U, U T::*Member>
int luaU_get(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
luaU_push<U>(L, obj->*Member);
return 1;
}
template <typename T, typename U, U* T::*Member>
int luaU_get(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
luaW_push<U>(L, obj->*Member);
return 1;
}
template <typename T, typename U, U (T::*Getter)() const>
int luaU_get(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
luaU_push<U>(L, (obj->*Getter)());
return 1;
}
template <typename T, typename U, const U& (T::*Getter)() const>
int luaU_get(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
luaU_push<U>(L, (obj->*Getter)());
return 1;
}
template <typename T, typename U, U* (T::*Getter)() const>
int luaU_get(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
luaW_push<U>(L, (obj->*Getter)());
return 1;
}
template <typename T, typename U, U T::*Member>
int luaU_set(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj)
obj->*Member = luaU_check<U>(L, 2);
return 0;
}
template <typename T, typename U, U* T::*Member>
int luaU_set(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj)
{
U* member = luaW_opt<U>(L, 2);
obj->*Member = member;
}
return 0;
}
template <typename T, typename U, const U* T::*Member>
int luaU_set(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj)
{
U* member = luaW_opt<U>(L, 2);
obj->*Member = member;
}
return 0;
}
template <typename T, typename U, const U* T::*Member>
int luaU_setandrelease(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj)
{
U* member = luaW_opt<U>(L, 2);
obj->*Member = member;
if (member)
luaW_release<U>(L, member);
}
return 0;
}
template <typename T, typename U, void (T::*Setter)(U)>
int luaU_set(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj)
(obj->*Setter)(luaU_check<U>(L, 2));
return 0;
}
template <typename T, typename U, void (T::*Setter)(const U&)>
int luaU_set(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj)
(obj->*Setter)(luaU_check<U>(L, 2));
return 0;
}
template <typename T, typename U, void (T::*Setter)(U*)>
int luaU_set(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj)
{
U* member = luaW_opt<U>(L, 2);
(obj->*Setter)(member);
}
return 0;
}
template <typename T, typename U, void (T::*Setter)(U*)>
int luaU_setandrelease(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj)
{
U* member = luaW_opt<U>(L, 2);
(obj->*Setter)(member);
if (member)
luaW_release<U>(L, member);
}
return 0;
}
template <typename T, typename U, U T::*Member>
int luaU_getset(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj && lua_gettop(L) >= 2)
{
obj->*Member = luaU_check<U>(L, 2);
return 0;
}
else
{
luaU_push<U>(L, obj->*Member);
return 1;
}
}
template <typename T, typename U, U* T::*Member>
int luaU_getset(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj && lua_gettop(L) >= 2)
{
U* member = luaW_opt<U>(L, 2);
obj->*Member = member;
return 0;
}
else
{
luaW_push<U>(L, obj->*Member);
return 1;
}
}
template <typename T, typename U, U* T::*Member>
int luaU_getsetandrelease(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj && lua_gettop(L) >= 2)
{
U* member = luaW_opt<U>(L, 2);
obj->*Member = member;
if (member)
luaW_release<U>(L, member);
return 0;
}
else
{
luaW_push<U>(L, obj->*Member);
return 1;
}
}
template <typename T, typename U, U (T::*Getter)() const, void (T::*Setter)(U)>
int luaU_getset(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj && lua_gettop(L) >= 2)
{
(obj->*Setter)(luaU_check<U>(L, 2));
return 0;
}
else
{
luaU_push<U>(L, (obj->*Getter)());
return 1;
}
}
template <typename T, typename U, U (T::*Getter)() const, void (T::*Setter)(const U&)>
int luaU_getset(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj && lua_gettop(L) >= 2)
{
(obj->*Setter)(luaU_check<U>(L, 2));
return 0;
}
else
{
luaU_push<U>(L, (obj->*Getter)());
return 1;
}
}
template <typename T, typename U, const U& (T::*Getter)() const, void (T::*Setter)(const U&)>
int luaU_getset(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj && lua_gettop(L) >= 2)
{
(obj->*Setter)(luaU_check<U>(L, 2));
return 0;
}
else
{
luaU_push<U>(L, (obj->*Getter)());
return 1;
}
}
template <typename T, typename U, U* (T::*Getter)() const, void (T::*Setter)(U*)>
int luaU_getset(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj && lua_gettop(L) >= 2)
{
U* member = luaW_opt<U>(L, 2);
(obj->*Setter)(member);
return 0;
}
else
{
luaW_push<U>(L, (obj->*Getter)());
return 1;
}
}
template <typename T, typename U, U* (T::*Getter)() const, void (T::*Setter)(U*)>
int luaU_getsetandrelease(lua_State* L)
{
T* obj = luaW_check<T>(L, 1);
if (obj && lua_gettop(L) >= 2)
{
U* member = luaW_opt<U>(L, 2);
(obj->*Setter)(member);
if (member)
luaW_release<U>(L, member);
return 0;
}
else
{
luaW_push<U>(L, (obj->*Getter)());
return 1;
}
}
#if !defined(_WIN32) && !defined(LUAW_NO_CXX11)
///////////////////////////////////////////////////////////////////////////////
//
// luaU_func is a special macro that expands into a simple function wrapper.
// Unlike the getter setters above, you merely need to name the function you
// would like to wrap.
//
// For example,
//
// struct Foo
// {
// int DoSomething(int, const char*);
// };
//
// static luaL_reg Foo_metatable[] =
// {
// { "DoSomething", luaU_func(&Foo::DoSomething) },
// { NULL, NULL }
// }
//
// This macro will expand based on the function signature of Foo::DoSomething
// In this example, it would expand into the following wrapper:
//
// luaU_push(luaW_check<T>(L, 1)->DoSomething(luaU_check<int>(L, 2), luaU_check<const char*>(L, 3)));
// return 1;
//
// In this example there is only one member function called DoSomething. In some
// cases there may be multiple overrides for a function. For those cases, an
// additional macro has been provided, luaU_funcsig, which takes the entire
// function signature. The arguments to the macro reflect the order they would
// appear in the function signature: return type, type name, function name, and
// finally a list of all the argument types. For example:
//
// struct Foo
// {
// int DoSomething (const char*);
// int DoSomething (const char*, int);
// };
//
// const struct luaL_Reg Foo_metatable[] =
// {
// {"DoSomething1", luaU_funcsig(int, Foo, DoSomething, const char*)) },
// {"DoSomething1", luaU_funcsig(int, Foo, DoSomething, const char*, int)) },
// { NULL, NULL }
// };
//
// These macros and it's underlying templates are somewhat experimental and some
// refinements are probably needed. There are cases where it does not
// currently work and I expect some changes can be made to refine its behavior.
//
#define luaU_func(memberfunc) &luaU_FuncWrapper<decltype(memberfunc),memberfunc>::call
#define luaU_funcsig(returntype, type, funcname, ...) luaU_func(static_cast<returntype (type::*)(__VA_ARGS__)>(&type::funcname))
template<int... ints> struct luaU_IntPack { };
template<int start, int count, int... tail> struct luaU_MakeIntRangeType { typedef typename luaU_MakeIntRangeType<start, count-1, start+count-1, tail...>::type type; };
template<int start, int... tail> struct luaU_MakeIntRangeType<start, 0, tail...> { typedef luaU_IntPack<tail...> type; };
template<int start, int count> inline typename luaU_MakeIntRangeType<start, count>::type luaU_makeIntRange() { return typename luaU_MakeIntRangeType<start, count>::type(); }
template<class MemFunPtrType, MemFunPtrType MemberFunc> struct luaU_FuncWrapper;
template<class T, class ReturnType, class... Args, ReturnType(T::*MemberFunc)(Args...)>
struct luaU_FuncWrapper<ReturnType (T::*)(Args...), MemberFunc>
{
public:
static int call(lua_State* L)
{
return callImpl(L, luaU_makeIntRange<2,sizeof...(Args)>());
}
private:
template<int... indices>
static int callImpl(lua_State* L, luaU_IntPack<indices...>)
{
luaU_push<ReturnType>(L, (luaW_check<T>(L, 1)->*MemberFunc)(luaU_check<Args>(L, indices)...));
return 1;
}
};
#endif
///////////////////////////////////////////////////////////////////////////////
//
// Calls the copy constructor for an object of type T.
// Arguments may be passed in, in case they're needed for the postconstructor
//
// e.g.
//
// C++:
// luaL_reg Foo_Metatable[] =
// {
// { "clone", luaU_clone<Foo> },
// { NULL, NULL }
// };
//
// Lua:
// foo = Foo.new()
// foo2 = foo:clone()
//
template <typename T>
int luaU_clone(lua_State* L)
{
// obj ...
T* obj = new T(*luaW_check<T>(L, 1));
lua_remove(L, 1); // ...
int numargs = lua_gettop(L);
luaW_push<T>(L, obj); // ... clone
luaW_hold<T>(L, obj);
luaW_postconstructor<T>(L, numargs);
return 1;
}
///////////////////////////////////////////////////////////////////////////////
//
// luaU_build is intended to be used to initialize many values by passing in a
// table. They keys of the table are used as function names, and values are
// used as arguments to the function. This is intended to be used on functions
// that are simple setters.
//
// For example, if luaU_build is set as the post constructor, you can
// initialize an object as so:
//
// f = Foo.new
// {
// X = 10;
// Y = 20;
// }
//
// After the object is constructed, luaU_build will do the equivalent of
// calling f:X(10) and f:Y(20).
//
template <typename T>
int luaU_build(lua_State* L)
{
// obj {}
lua_insert(L, -2); // {} obj
if (lua_type(L, 1) == LUA_TTABLE)
{
for (lua_pushnil(L); lua_next(L, 1); lua_pop(L, 1))
{
// {} obj k v
lua_pushvalue(L, -2); // {} obj k v k
lua_gettable(L, -4); // {} obj k v ud[k]
lua_pushvalue(L, -4); // {} obj k v ud[k] ud
lua_pushvalue(L, -3); // {} obj k v ud[k] ud v
lua_call(L, 2, 0); // {} obj k v
}
// {} ud
}
return 0;
}
///////////////////////////////////////////////////////////////////////////////
//
// Takes the object of type T at the top of the stack and stores it in on a
// table with the name storagetable, on the table at the specified index.
//
// You may manually call luaW_hold and luaW_release to handle pointer
// ownership, but it is often easier to simply store a Lua userdata on a table
// that is owned by its parent. This ensures that your object will not be
// prematurely freed, and that it can only be destoryed after its parent.
//
// e.g.
//
// Foo* parent = luaW_check<Foo>(L, 1);
// Bar* child = luaW_check<Bar>(L, 2);
// if (parent && child)
// {
// luaU_store<Bar>(L, 1, "Children");
// parent->AddChild(child);
// }
//
template <typename T>
void luaU_store(lua_State* L, int index, const char* storagetable, const char* key = NULL)
{
// ... store ... obj
lua_getfield(L, index, storagetable); // ... store ... obj store.storagetable
if (key)
lua_pushstring(L, key); // ... store ... obj store.storagetable key
else
LuaWrapper<T>::identifier(L, luaW_to<T>(L, -2)); // ... store ... obj store.storagetable key
lua_pushvalue(L, -3); // ... store ... obj store.storagetable key obj
lua_settable(L, -3); // ... store ... obj store.storagetable
lua_pop(L, 1); // ... store ... obj
}
/*
* Copyright (c) 2010-2011 Alexander Ames
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#endif // LUAWRAPPERUTILS_HPP_

64
luarocks/main.cpp Normal file
View File

@ -0,0 +1,64 @@
/*
* main.cpp
* Author: Benjamin Sergeant
* Copyright (c) 2020 Machine Zone, Inc. All rights reserved.
*/
#include <iostream>
extern "C"
{
#include "lua.h"
#include "lualib.h"
#include "lauxlib.h"
}
#include "functions.hpp"
#include "LuaWebSocket.h"
#include <iostream>
int main()
{
lua_State* L = luaL_newstate();
luaL_openlibs(L);
// Functions
lua_register(L, "info", lua_info);
// Objets
ix::luaopen_WebSocket(L);
//
// Simple version does little error handling
// luaL_dofile(L, "echo_client.lua");
//
std::string luaFile("echo_client.lua");
int loadStatus = luaL_loadfile(L, luaFile.c_str());
if (loadStatus)
{
std::cerr << "Error loading " << luaFile << std::endl;
std::cerr << lua_tostring(L, -1) << std::endl;
return 1;
}
else
{
std::cout << "loaded " << luaFile << std::endl;
}
//
// Capture lua errors
//
try
{
lua_call(L, 0, 0);
lua_close(L);
}
catch (const std::runtime_error& ex)
{
lua_close(L);
std::cerr << ex.what() << std::endl;
return 1;
}
return 0;
}

View File

@ -159,6 +159,9 @@ test_no_ssl:
mkdir -p build && (cd build ; cmake -DCMAKE_BUILD_TYPE=Debug -DUSE_TEST=1 .. ; make -j 4)
(cd test ; python2.7 run.py -r)
luarocks:
mkdir -p build && (cd build ; cmake -GNinja -DCMAKE_BUILD_TYPE=Debug -DUSE_LUAROCKS=1 .. ; ninja)
ws_test: ws
(cd ws ; env DEBUG=1 PATH=../ws/build:$$PATH bash test_ws.sh)
@ -185,3 +188,4 @@ doc:
.PHONY: test
.PHONY: build
.PHONY: ws
.PHONY: luarocks

View File

@ -31,6 +31,10 @@
#define getpid _getpid
#endif
int helper()
{
return 0;
}
int main(int argc, char** argv)
{