Compare commits

..

No commits in common. "main" and "v0.10.1" have entirely different histories.

11 changed files with 1532 additions and 12674 deletions

3
.gitignore vendored
View File

@ -2,5 +2,4 @@ dist
models
__pycache__
.pytest_cache
.ruff_cache
.venv
.ruff_cache

View File

@ -1 +0,0 @@
3.12

9
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,9 @@
{
"[python]": {
"editor.defaultFormatter": "ms-python.black-formatter",
"editor.formatOnType": true,
"editor.codeActionsOnSave": {
"source.organizeImports": "explicit"
},
},
}

1120
poetry.lock generated Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,92 +1,36 @@
[project]
[tool.poetry]
name = "wdtagger"
version = "0.14.0"
description = "A simple and easy-to-use wrapper for the tagger model created by [SmilingWolf](https://github.com/SmilingWolf) which is specifically designed for tagging anime illustrations."
authors = [{ name = "Jianqi Pan", email = "jannchie@gmail.com" }]
version = "0.10.1"
description = ""
authors = ["Jianqi Pan <jannchie@gmail.com>"]
readme = "README.md"
requires-python = ">=3.10"
dependencies = ["huggingface-hub>=0.26.2", "pandas>=2.2.3", "pillow>=11.0.0"]
[dependency-groups]
dev = ["pytest>=8.3.3", "pytest-benchmark>=5.1.0", "ruff>=0.8.0"]
[tool.poetry.dependencies]
python = "^3.10"
pillow = "^10.3.0"
pandas = "^2.2.2"
huggingface-hub = "^0.23.3"
rich = "^13.7.1"
onnxruntime-gpu = "^1.18.0"
[project.optional-dependencies]
cpu = ["torch>=2.0.0", "torchvision>=0.20.1", "timm>=1.0.11"]
gpu = ["torch>=2.0.0", "torchvision>=0.20.1", "timm>=1.0.11"]
cuda11 = ["torch>=2.0.0", "torchvision>=0.20.1", "timm>=1.0.11"]
cuda12 = ["torch>=2.0.0", "torchvision>=0.20.1", "timm>=1.0.11"]
[tool.poetry.group.dev.dependencies]
pytest = "^8.2.2"
pytest-benchmark = "^4.0.0"
ruff = "^0.5.5"
isort = "^5.13.2"
black = "^24.4.2"
mypy = "^1.11.0"
[tool.isort]
profile = "black"
[tool.ruff]
line-length = 140
select = ["ALL"]
[tool.black]
line-length = 120
ignore = [
"PGH",
"RUF003",
"BLE001",
"ERA001",
"FIX002",
"TD002",
"TD003",
"D",
"N812",
]
[tool.ruff.lint.extend-per-file-ignores]
"tests/**/*.py" = [
"S101", # asserts allowed in tests
"PLR2004", # Magic value used in comparison
]
[tool.pyright]
[tool.uv]
conflicts = [
[
{ extra = "cpu" },
{ extra = "gpu" },
{ extra = "cuda11" },
{ extra = "cuda12" },
],
]
package = true
[tool.uv.sources]
torch = [
{ index = "torch-cpu", extra = "cpu" },
{ index = "torch-gpu", extra = "gpu" },
{ index = "torch-cuda11", extra = "cuda11" },
{ index = "torch-cuda12", extra = "cuda12" },
]
torchvision = [
{ index = "torch-cpu", extra = "cpu" },
{ index = "torch-gpu", extra = "gpu" },
{ index = "torch-cuda11", extra = "cuda11" },
{ index = "torch-cuda12", extra = "cuda12" },
]
[[tool.uv.index]]
name = "torch-cpu"
url = "https://download.pytorch.org/whl/cpu"
explicit = true
[[tool.uv.index]]
name = "torch-gpu"
url = "https://download.pytorch.org/whl/cu124"
explicit = true
[[tool.uv.index]]
name = "torch-cuda11"
url = "https://download.pytorch.org/whl/cu118"
explicit = true
[[tool.uv.index]]
name = "torch-cuda12"
url = "https://download.pytorch.org/whl/cu124"
explicit = true
[tool.mypy]
ignore_missing_imports = true
[build-system]
requires = ["hatchling"]
build-backend = "hatchling.build"
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@ -1,326 +0,0 @@
import importlib.resources
import logging
import os
import time
from collections.abc import Sequence
from dataclasses import dataclass
from pathlib import Path
from typing import TYPE_CHECKING, Literal, overload
import numpy as np
import pandas as pd
import timm
import torch
from PIL import Image
from PIL.ImageFile import ImageFile
from timm.data import create_transform, resolve_data_config
from torch import Tensor, nn
from torch.nn import functional as F
if TYPE_CHECKING:
from torchvision.transforms import Compose
HF_TOKEN = os.environ.get("HF_TOKEN", "")
Input = np.ndarray | Image.Image | str | Path | ImageFile
@dataclass
class LabelData:
names: list[str]
rating: list[np.int64]
general: list[np.int64]
character: list[np.int64]
def load_labels() -> LabelData:
file = importlib.resources.as_file(importlib.resources.files("wdtagger.assets").joinpath("selected_tags.csv"))
with file as f:
df: pd.DataFrame = pd.read_csv(f, usecols=["name", "category"])
rating_catagory_idx = 9
general_catagory_idx = 0
character_catagory_idx = 4
return LabelData(
names=df["name"].tolist(),
rating=list(np.where(df["category"] == rating_catagory_idx)[0]),
general=list(np.where(df["category"] == general_catagory_idx)[0]),
character=list(np.where(df["category"] == character_catagory_idx)[0]),
)
def pil_ensure_rgb(image: Image.Image) -> Image.Image:
# convert to RGB/RGBA if not already (deals with palette images etc.)
if image.mode not in ["RGB", "RGBA"]:
image = image.convert("RGBA") if "transparency" in image.info else image.convert("RGB")
# convert RGBA to RGB with white background
if image.mode == "RGBA":
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
return image
def pil_pad_square(image: Image.Image) -> Image.Image:
w, h = image.size
# get the largest dimension so we can pad to a square
px = max(image.size)
# pad to square with white background
canvas = Image.new("RGB", (px, px), (255, 255, 255))
canvas.paste(image, ((px - w) // 2, (px - h) // 2))
return canvas
def to_pil(img: Input) -> Image.Image:
if isinstance(img, str | Path):
return Image.open(img)
if isinstance(img, np.ndarray):
return Image.fromarray(img)
if isinstance(img, Image.Image):
return img
msg = "Invalid input type."
raise ValueError(msg)
def get_tags(
probs: Tensor,
labels: LabelData,
gen_threshold: float,
char_threshold: float,
) -> tuple[dict[str, float], dict[str, float], dict[str, float]]:
# Convert indices+probs to labels
probs_list = list(zip(labels.names, probs.numpy(), strict=False))
# First 4 labels are actually ratings
rating_labels = dict([probs_list[i] for i in labels.rating])
# General labels, pick any where prediction confidence > threshold
gen_labels = [probs_list[i] for i in labels.general]
gen_labels = dict([x for x in gen_labels if x[1] > gen_threshold])
gen_labels = dict(sorted(gen_labels.items(), key=lambda item: item[1], reverse=True))
# Character labels, pick any where prediction confidence > threshold
char_labels = [probs_list[i] for i in labels.character]
char_labels = dict([x for x in char_labels if x[1] > char_threshold])
char_labels = dict(sorted(char_labels.items(), key=lambda item: item[1], reverse=True))
return rating_labels, char_labels, gen_labels
class Result:
def __init__(
self,
rating_data: dict[str, float],
character_tag: dict[str, float],
general_tag: dict[str, float],
) -> None:
"""Initialize the Result object with the tags and their ratings."""
self.general_tag_data = general_tag
self.character_tag_data = character_tag
self.rating_data = rating_data
@property
def general_tags(self) -> tuple[str, ...]:
"""Return general tags as a tuple."""
return tuple(
d.replace("_", " ")
for d in sorted(
self.general_tag_data,
key=lambda k: self.general_tag_data[k],
reverse=True,
)
)
@property
def character_tags(self) -> tuple[str, ...]:
"""Return character tags as a tuple."""
return tuple(
d.replace("_", " ")
for d in sorted(
self.character_tag_data,
key=lambda k: self.character_tag_data[k],
reverse=True,
)
)
@property
def rating(self) -> Literal["general", "sensitive", "questionable", "explicit"]:
"""Return the highest rated tag."""
return max(self.rating_data, key=lambda k: self.rating_data[k]) # type: ignore
@property
def general_tags_string(self) -> str:
"""Return general tags as a sorted string."""
string = sorted(
self.general_tag_data.items(),
key=lambda x: x[1],
reverse=True,
)
string = [x[0] for x in string]
return ", ".join(string)
@property
def character_tags_string(self) -> str:
"""Return character tags as a sorted string."""
string = sorted(
self.character_tag_data.items(),
key=lambda x: x[1],
reverse=True,
)
string = [x[0] for x in string]
return ", ".join(string)
@property
def all_tags(self) -> list[str]:
"""Return all tags as a list."""
return [self.rating, *list(self.character_tags), *list(self.general_tags)]
@property
def all_tags_string(self) -> str:
return ", ".join(self.all_tags)
def __str__(self) -> str:
"""Return a formatted string representation of the tags and their ratings."""
def get_tag_with_rate(tag_dict: dict[str, float]) -> str:
return ", ".join([f"{k} ({v:.2f})" for k, v in tag_dict.items()])
result = f"General tags: {get_tag_with_rate(self.general_tag_data)}\n"
result += f"Character tags: {get_tag_with_rate(self.character_tag_data)}\n"
result += f"Rating: {self.rating} ({self.rating_data[self.rating]:.2f})"
return result
class Tagger:
def __init__(
self,
model_repo: str = "SmilingWolf/wd-swinv2-tagger-v3",
hf_token: str = HF_TOKEN,
) -> None:
"""Initialize the Tagger object with the model repository and tokens."""
self.logger = logging.getLogger("wdtagger")
self.model_target_size = None
self.hf_token = hf_token
self.torch_device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self._load_model(model_repo)
def _load_model(
self,
model_repo: str,
) -> None:
"""Load the model and tags from the specified repository.
Args:
model_repo (str): Repository name on HuggingFace.
cache_dir (str, optional): Directory to cache the model. Defaults to None.
hf_token (str, optional): HuggingFace token for authentication. Defaults to None.
num_threads (int, optional): Number of threads for ONNX runtime. Defaults to None.
"""
start_time = time.time()
self.logger.info("Loading model from %s", model_repo)
self._do_load_model(model_repo)
self.logger.info("Model loaded successfully in %.2fs", time.time() - start_time)
def _do_load_model(self, model_repo: str) -> None:
model: nn.Module = timm.create_model(f"hf-hub:{model_repo}").eval()
state_dict = timm.models.load_state_dict_from_hf(model_repo)
model.load_state_dict(state_dict)
self.labels: LabelData = load_labels()
self.transform: Compose = create_transform(**resolve_data_config(model.pretrained_cfg, model=model)) # type: ignore
self.model = model.to(self.torch_device)
@overload
def tag(
self,
image: Input,
general_threshold: float = 0.35,
character_threshold: float = 0.9,
) -> Result: ...
@overload
def tag(
self,
image: Sequence[Input],
general_threshold: float = 0.35,
character_threshold: float = 0.9,
) -> Sequence[Result]: ...
def tag(
self,
image: Input | Sequence[Input],
general_threshold=0.35,
character_threshold=0.9,
) -> Result | Sequence[Result]:
"""Tag the image and return the results.
Args:
image (Union[Input, List[Input]]): Input image or list of images to tag.
general_threshold (float): Threshold for general tags.
character_threshold (float): Threshold for character tags.
Returns:
Result | list[Result]: Tagging results.
"""
started_at = time.time()
images = list(image) if isinstance(image, Sequence) and not isinstance(image, str) else [image]
images = [to_pil(img) for img in images]
images = [pil_ensure_rgb(img) for img in images]
images = [pil_pad_square(img) for img in images]
inputs: Tensor = torch.stack([self.transform(img) for img in images]) # type: ignore
inputs = inputs[:, [2, 1, 0]] # BGR to RGB
with torch.inference_mode():
# move model to GPU, if available
if self.torch_device.type != "cpu":
inputs = inputs.to(self.torch_device)
# run the model
outputs = self.model.forward(inputs)
# apply the final activation function (timm doesn't support doing this internally)
outputs = F.sigmoid(outputs)
# move inputs, outputs, and model back to to cpu if we were on GPU
if self.torch_device.type != "cpu":
inputs = inputs.to("cpu")
outputs = outputs.to("cpu")
results = [
Result(
*get_tags(
probs=o,
labels=self.labels,
gen_threshold=general_threshold,
char_threshold=character_threshold,
),
)
for o in outputs
]
duration = time.time() - started_at
image_length = len(images)
self.logger.info(
"Tagged %d image%s in %.2fs",
image_length,
"s" if image_length > 1 else "",
duration,
)
if isinstance(image, Sequence) and not isinstance(image, str):
return results
return results[0] if len(results) == 1 else results
__all__ = ["Tagger"]
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger("wdtagger")
tagger = Tagger()
images = [
Image.open("./tests/images/赤松楓.9d64b955.jpeg"),
]
results = tagger.tag(images)
for result in results:
logger.info(result.all_tags_string)

File diff suppressed because it is too large Load Diff

View File

View File

@ -6,60 +6,54 @@ from wdtagger import Tagger
@pytest.fixture
def tagger() -> Tagger:
"""
Create and return a new instance of the Tagger class.
Returns:
Tagger: An instance of the Tagger class.
"""
def tagger():
return Tagger()
@pytest.fixture
def image_file() -> str:
def image_file():
return "./tests/images/赤松楓.9d64b955.jpeg"
def test_tagger(tagger: Tagger, image_file: str) -> None:
def test_tagger(tagger, image_file):
image = Image.open(image_file)
result = tagger.tag(image, character_threshold=0.85, general_threshold=0.35)
assert result.character_tags_string == "akamatsu_kaede"
assert result.character_tags_string == "akamatsu kaede"
assert result.rating == "general"
@pytest.mark.parametrize("image_file", ["./tests/images/赤松楓.9d64b955.jpeg"])
def test_tagger_path_single(tagger: Tagger, image_file: str) -> None:
def test_tagger_path(tagger, image_file):
result = tagger.tag(image_file, character_threshold=0.85, general_threshold=0.35)
assert result.character_tags_string == "akamatsu_kaede"
assert result.character_tags_string == "akamatsu kaede"
assert result.rating == "general"
@pytest.mark.parametrize("image_file", ["./tests/images/赤松楓.9d64b955.jpeg"])
def test_tagger_np(tagger: Tagger, image_file: str) -> None:
def test_tagger_np(tagger, image_file):
image = Image.open(image_file)
image_np = np.array(image)
result = tagger.tag(image_np, character_threshold=0.85, general_threshold=0.35)
assert result.character_tags_string == "akamatsu_kaede"
assert result.character_tags_string == "akamatsu kaede"
assert result.rating == "general"
@pytest.mark.parametrize("image_file", ["./tests/images/赤松楓.9d64b955.jpeg"])
def test_tagger_pil(tagger: Tagger, image_file: str) -> None:
def test_tagger_pil(tagger, image_file):
image = Image.open(image_file)
result = tagger.tag(image, character_threshold=0.85, general_threshold=0.35)
assert result.character_tags_string == "akamatsu_kaede"
assert result.character_tags_string == "akamatsu kaede"
assert result.rating == "general"
@pytest.mark.parametrize("image_file", ["./tests/images/赤松楓.9d64b955.jpeg"])
def test_tagger_path_multi(tagger: Tagger, image_file: str) -> None:
results = tagger.tag([image_file, image_file], character_threshold=0.85, general_threshold=0.35)
assert len(results) == 2
@pytest.mark.parametrize("image_file", [["./tests/images/赤松楓.9d64b955.jpeg"]])
def test_tagger_np_single(tagger, image_file):
results = tagger.tag(image_file, character_threshold=0.85, general_threshold=0.35)
assert len(results) == 1
result = results[0]
assert result.character_tags_string == "akamatsu_kaede"
assert result.character_tags_string == "akamatsu kaede"
assert result.rating == "general"

1380
uv.lock generated

File diff suppressed because it is too large Load Diff

361
wdtagger/__init__.py Normal file
View File

@ -0,0 +1,361 @@
import logging
import os
import time
from collections import OrderedDict
from pathlib import Path
from typing import Any, List, Literal, Sequence, Union, overload
import huggingface_hub
import numpy as np
import onnxruntime as rt
import pandas as pd
from PIL import Image
from rich.logging import RichHandler
HF_TOKEN = os.environ.get("HF_TOKEN", "")
MODEL_FILENAME = "model.onnx"
LABEL_FILENAME = "selected_tags.csv"
Input = Union[np.ndarray, Image.Image, str, Path]
def to_pil(img: Input) -> Image.Image:
if isinstance(img, (str, Path)):
return Image.open(img)
elif isinstance(img, np.ndarray):
return Image.fromarray(img)
elif isinstance(img, Image.Image):
return img
else:
raise ValueError("Invalid input type.")
def load_labels(dataframe) -> tuple[Any, list[Any], list[Any], list[Any]]:
"""Load labels from a dataframe and process tag names.
Args:
dataframe (pd.DataFrame): DataFrame containing the tag names and categories.
Returns:
tag_names: List of tag names.
rating_indexes: List of indexes for rating tags.
general_indexes: List of indexes for general tags.
character_indexes: List of indexes for character tags.
"""
name_series = dataframe["name"]
kaomojis = [
"0_0",
"(o)_(o)",
"+_+",
"+_-",
"._.",
"<o>_<o>",
"<|>_<|>",
"=_=",
">_<",
"3_3",
"6_9",
">_o",
"@_@",
"^_^",
"o_o",
"u_u",
"x_x",
"|_|",
"||_||",
]
name_series = name_series.map(lambda x: x.replace("_", " ") if x not in kaomojis else x)
tag_names = name_series.tolist()
rating_indexes = list(np.where(dataframe["category"] == 9)[0])
general_indexes = list(np.where(dataframe["category"] == 0)[0])
character_indexes = list(np.where(dataframe["category"] == 4)[0])
return tag_names, rating_indexes, general_indexes, character_indexes
class Result:
def __init__(
self,
pred,
sep_tags,
general_threshold=0.35,
character_threshold=0.9,
):
"""Initialize the Result object to store tagging results.
Args:
preds (np.array): Predictions array from the model.
sep_tags (tuple): Tuple containing separated tags based on categories.
general_threshold (float): Threshold for general tags.
character_threshold (float): Threshold for character tags.
"""
tag_names = sep_tags[0]
rating_indexes = sep_tags[1]
general_indexes = sep_tags[2]
character_indexes = sep_tags[3]
labels = list(zip(tag_names, pred.astype(float)))
# Ratings
ratings_names = [labels[i] for i in rating_indexes]
rating_data = dict(ratings_names)
rating_data = OrderedDict(sorted(rating_data.items(), key=lambda x: x[1], reverse=True))
# General tags
general_names = [labels[i] for i in general_indexes]
general_tag = [x for x in general_names if x[1] > general_threshold]
general_tag = OrderedDict(sorted(general_tag, key=lambda x: x[1], reverse=True))
# Character tags
character_names = [labels[i] for i in character_indexes]
character_tag = [x for x in character_names if x[1] > character_threshold]
character_tag = OrderedDict(sorted(character_tag, key=lambda x: x[1], reverse=True))
self.general_tag_data = general_tag
self.character_tag_data = character_tag
self.rating_data = rating_data
@property
def general_tags(self) -> tuple[str]:
"""Return general tags as a tuple."""
return tuple(self.general_tag_data.keys())
@property
def character_tags(self) -> tuple[str]:
"""Return character tags as a tuple."""
return tuple(self.character_tag_data.keys())
@property
def rating(self) -> Literal["general", "sensitive", "questionable", "explicit"]:
"""Return the highest rated tag."""
return max(self.rating_data, key=self.rating_data.get)
@property
def general_tags_string(self) -> str:
"""Return general tags as a sorted string."""
string = sorted(
self.general_tag_data.items(),
key=lambda x: x[1],
reverse=True,
)
string = [x[0] for x in string]
return ", ".join(string)
@property
def character_tags_string(self) -> str:
"""Return character tags as a sorted string."""
string = sorted(
self.character_tag_data.items(),
key=lambda x: x[1],
reverse=True,
)
string = [x[0] for x in string]
return ", ".join(string)
@property
def all_tags(self) -> list[str]:
"""Return all tags as a list."""
return [self.rating] + list(self.general_tags) + list(self.character_tags)
@property
def all_tags_string(self) -> str:
return ", ".join(self.all_tags)
def __str__(self) -> str:
"""Return a formatted string representation of the tags and their ratings."""
def get_tag_with_rate(tag_dict):
return ", ".join([f"{k} ({v:.2f})" for k, v in tag_dict.items()])
result = f"General tags: {get_tag_with_rate(self.general_tag_data)}\n"
result += f"Character tags: {get_tag_with_rate(self.character_tag_data)}\n"
result += f"Rating: {self.rating} ({self.rating_data[self.rating]:.2f})"
return result
class Tagger:
def __init__(
self,
model_repo="SmilingWolf/wd-swinv2-tagger-v3",
cache_dir=None,
hf_token=HF_TOKEN,
loglevel=logging.INFO,
num_threads=None,
providers=None,
console=None,
slient=False,
):
"""Initialize the Tagger object with the model repository and tokens.
Args:
model_repo (str): Repository name on HuggingFace.
cache_dir (str, optional): Directory to cache the model. Defaults to None.
hf_token (str, optional): HuggingFace token for authentication. Defaults to HF_TOKEN.
loglevel (int, optional): Logging level. Defaults to logging.INFO.
num_threads (int, optional): Number of threads for ONNX runtime. Defaults to None.
providers (list, optional): List of providers for ONNX runtime. Defaults to None.
console (rich.console.Console, optional): Rich console object. Defaults to None.
"""
self.slient = slient
if providers is None:
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
if not slient:
if not console:
from rich import get_console
self.console = get_console()
else:
self.console = console
self.logger = logging.getLogger("wdtagger")
self.logger.setLevel(loglevel)
self.logger.addHandler(RichHandler())
self.model_target_size = None
self.cache_dir = cache_dir
self.hf_token = hf_token
self.load_model(
model_repo,
cache_dir,
hf_token,
num_threads=num_threads,
providers=providers,
)
def load_model(
self,
model_repo,
cache_dir=None,
hf_token=None,
num_threads: int | None = None,
providers: Sequence[str | tuple[str, dict[Any, Any]]] | None = None,
):
"""Load the model and tags from the specified repository.
Args:
model_repo (str): Repository name on HuggingFace.
cache_dir (str, optional): Directory to cache the model. Defaults to None.
hf_token (str, optional): HuggingFace token for authentication. Defaults to None.
num_threads (int, optional): Number of threads for ONNX runtime. Defaults to None.
"""
if not self.slient:
with self.console.status("Loading model..."):
self.do_load_model(model_repo, cache_dir, hf_token, num_threads, providers)
else:
self.do_load_model(model_repo, cache_dir, hf_token, num_threads, providers)
def do_load_model(self, model_repo, cache_dir, hf_token, num_threads, providers):
csv_path = huggingface_hub.hf_hub_download(
model_repo,
LABEL_FILENAME,
cache_dir=cache_dir,
use_auth_token=hf_token,
)
model_path = huggingface_hub.hf_hub_download(
model_repo,
MODEL_FILENAME,
cache_dir=cache_dir,
use_auth_token=hf_token,
)
tags_df = pd.read_csv(csv_path)
self.sep_tags = load_labels(tags_df)
options = rt.SessionOptions()
if num_threads:
options.intra_op_num_threads = num_threads
options.inter_op_num_threads = num_threads
model = rt.InferenceSession(
model_path,
options,
providers=providers,
)
_, height, _, _ = model.get_inputs()[0].shape
self.model_target_size = height
self.model = model
def pil_to_cv2_numpy(self, image):
"""Prepare the image for model input.
Args:
image (PIL.Image): Input image.
Returns:
np.array: Processed image as a NumPy array.
"""
if image.mode != "RGBA":
image = image.convert("RGBA")
target_size = self.model_target_size
canvas = Image.new("RGBA", image.size, (255, 255, 255))
canvas.alpha_composite(image)
image = canvas.convert("RGB")
# Pad image to square
image_shape = image.size
max_dim = max(image_shape)
pad_left = (max_dim - image_shape[0]) // 2
pad_top = (max_dim - image_shape[1]) // 2
padded_image = Image.new("RGB", (max_dim, max_dim), (255, 255, 255))
padded_image.paste(image, (pad_left, pad_top))
# Resize
if max_dim != target_size:
padded_image = padded_image.resize(
(target_size, target_size),
Image.BICUBIC,
)
array = np.asarray(padded_image, dtype=np.float32)
array = array[:, :, [2, 1, 0]]
return array
@overload
def tag(self, image: Input, general_threshold: float = 0.35, character_threshold: float = 0.9) -> Result: ...
@overload
def tag(
self, image: List[Input], general_threshold: float = 0.35, character_threshold: float = 0.9
) -> List[Result]: ...
def tag(
self,
image: Union[Input, List[Input]],
general_threshold=0.35,
character_threshold=0.9,
) -> Result | list[Result]:
"""Tag the image and return the results.
Args:
image (Union[Input, List[Input]]): Input image or list of images to tag.
general_threshold (float): Threshold for general tags.
character_threshold (float): Threshold for character tags.
Returns:
Result | list[Result]: Tagging results.
"""
started_at = time.time()
input_is_list = isinstance(image, list)
images = image if isinstance(image, list) else [image]
images = [to_pil(img) for img in images]
images = [self.pil_to_cv2_numpy(img) for img in images]
image_array = np.asarray(images, dtype=np.float32)
input_name = self.model.get_inputs()[0].name
label_name = self.model.get_outputs()[0].name
preds = self.model.run([label_name], {input_name: image_array})[0]
results = [Result(pred, self.sep_tags, general_threshold, character_threshold) for pred in preds]
duration = time.time() - started_at
image_length = len(images)
if not self.slient:
self.logger.info(
f"Tagging {image_length} image{ 's' if image_length > 1 else ''} took {duration:.2f} seconds."
)
if input_is_list:
return results
return results[0] if len(results) == 1 else results
__all__ = ["Tagger"]
if __name__ == "__main__":
tagger = Tagger()
image = Image.open("./tests/images/赤松楓.9d64b955.jpeg")
result = tagger.tag(image)
tagger.logger.info(result)