Compare commits
9 Commits
Author | SHA1 | Date | |
---|---|---|---|
09d331d8f0 | |||
6d1cbc0b2b | |||
c910823173 | |||
16686ce3c4 | |||
9eafed31dc | |||
a4003953e6 | |||
69f35eb373 | |||
c82f881c85 | |||
b9a763468a |
@ -1,5 +1,7 @@
|
||||
# wdtagger
|
||||
|
||||
[](https://codetime.dev)
|
||||
|
||||
`wdtagger` is a simple and easy-to-use wrapper for the tagger model created by [SmilingWolf](https://github.com/SmilingWolf) which is specifically designed for tagging anime illustrations.
|
||||
|
||||
## Installation
|
||||
|
@ -1,6 +1,6 @@
|
||||
[tool.poetry]
|
||||
name = "wdtagger"
|
||||
version = "0.5.0"
|
||||
version = "0.9.0"
|
||||
description = ""
|
||||
authors = ["Jianqi Pan <jannchie@gmail.com>"]
|
||||
readme = "README.md"
|
||||
|
@ -1,3 +1,4 @@
|
||||
import numpy as np
|
||||
import pytest
|
||||
from PIL import Image
|
||||
|
||||
@ -20,3 +21,39 @@ def test_tagger(tagger, image_file):
|
||||
|
||||
assert result.character_tags_string == "akamatsu kaede"
|
||||
assert result.rating == "general"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("image_file", ["./tests/images/赤松楓.9d64b955.jpeg"])
|
||||
def test_tagger_path(tagger, image_file):
|
||||
result = tagger.tag(image_file, character_threshold=0.85, general_threshold=0.35)
|
||||
|
||||
assert result.character_tags_string == "akamatsu kaede"
|
||||
assert result.rating == "general"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("image_file", ["./tests/images/赤松楓.9d64b955.jpeg"])
|
||||
def test_tagger_np(tagger, image_file):
|
||||
image = Image.open(image_file)
|
||||
image_np = np.array(image)
|
||||
result = tagger.tag(image_np, character_threshold=0.85, general_threshold=0.35)
|
||||
|
||||
assert result.character_tags_string == "akamatsu kaede"
|
||||
assert result.rating == "general"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("image_file", ["./tests/images/赤松楓.9d64b955.jpeg"])
|
||||
def test_tagger_pil(tagger, image_file):
|
||||
image = Image.open(image_file)
|
||||
result = tagger.tag(image, character_threshold=0.85, general_threshold=0.35)
|
||||
|
||||
assert result.character_tags_string == "akamatsu kaede"
|
||||
assert result.rating == "general"
|
||||
|
||||
|
||||
@pytest.mark.parametrize("image_file", [["./tests/images/赤松楓.9d64b955.jpeg"]])
|
||||
def test_tagger_np_single(tagger, image_file):
|
||||
results = tagger.tag(image_file, character_threshold=0.85, general_threshold=0.35)
|
||||
assert len(results) == 1
|
||||
result = results[0]
|
||||
assert result.character_tags_string == "akamatsu kaede"
|
||||
assert result.rating == "general"
|
||||
|
@ -2,29 +2,32 @@ import logging
|
||||
import os
|
||||
import time
|
||||
from collections import OrderedDict
|
||||
from pathlib import Path
|
||||
from typing import Any, List, Sequence, Union
|
||||
|
||||
import huggingface_hub
|
||||
import numpy as np
|
||||
import onnxruntime as rt
|
||||
import pandas as pd
|
||||
import rich
|
||||
import rich.live
|
||||
from PIL import Image
|
||||
from rich.logging import RichHandler
|
||||
|
||||
# Access console for rich text and logging
|
||||
console = rich.get_console()
|
||||
HF_TOKEN = os.environ.get("HF_TOKEN", "")
|
||||
MODEL_FILENAME = "model.onnx"
|
||||
LABEL_FILENAME = "selected_tags.csv"
|
||||
|
||||
# Environment variables and file paths
|
||||
HF_TOKEN = os.environ.get(
|
||||
"HF_TOKEN", ""
|
||||
) # Token for authentication with HuggingFace API
|
||||
MODEL_FILENAME = "model.onnx" # ONNX model filename
|
||||
LABEL_FILENAME = "selected_tags.csv" # Labels CSV filename
|
||||
Input = Union[np.ndarray, Image.Image, str, Path]
|
||||
|
||||
available_providers = rt.get_available_providers()
|
||||
supported_providers = ["CPUExecutionProvider", "CUDAExecutionProvider"]
|
||||
providers = list(set(available_providers) & set(supported_providers))
|
||||
|
||||
def to_pil(img: Input) -> Image.Image:
|
||||
if isinstance(img, (str, Path)):
|
||||
return Image.open(img)
|
||||
elif isinstance(img, np.ndarray):
|
||||
return Image.fromarray(img)
|
||||
elif isinstance(img, Image.Image):
|
||||
return img
|
||||
else:
|
||||
raise ValueError("Invalid input type.")
|
||||
|
||||
|
||||
def load_labels(dataframe) -> list[str]:
|
||||
@ -154,6 +157,15 @@ class Result:
|
||||
string = [x[0] for x in string]
|
||||
return ", ".join(string)
|
||||
|
||||
@property
|
||||
def all_tags(self) -> list[str]:
|
||||
"""Return all tags as a list."""
|
||||
return [self.rating] + list(self.general_tags) + list(self.character_tags)
|
||||
|
||||
@property
|
||||
def all_tags_string(self) -> str:
|
||||
return ", ".join(self.all_tags)
|
||||
|
||||
def __str__(self) -> str:
|
||||
"""Return a formatted string representation of the tags and their ratings."""
|
||||
|
||||
@ -174,6 +186,8 @@ class Tagger:
|
||||
hf_token=HF_TOKEN,
|
||||
loglevel=logging.INFO,
|
||||
num_threads=None,
|
||||
providers=None,
|
||||
console=None,
|
||||
):
|
||||
"""Initialize the Tagger object with the model repository and tokens.
|
||||
|
||||
@ -183,17 +197,40 @@ class Tagger:
|
||||
hf_token (str, optional): HuggingFace token for authentication. Defaults to HF_TOKEN.
|
||||
loglevel (int, optional): Logging level. Defaults to logging.INFO.
|
||||
num_threads (int, optional): Number of threads for ONNX runtime. Defaults to None.
|
||||
providers (list, optional): List of providers for ONNX runtime. Defaults to None.
|
||||
console (rich.console.Console, optional): Rich console object. Defaults to None.
|
||||
"""
|
||||
|
||||
if not console:
|
||||
from rich import get_console
|
||||
|
||||
self.console = get_console()
|
||||
else:
|
||||
self.console = console
|
||||
|
||||
if providers is None:
|
||||
providers = ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
||||
self.logger = logging.getLogger("wdtagger")
|
||||
self.logger.setLevel(loglevel)
|
||||
self.logger.addHandler(RichHandler())
|
||||
self.model_target_size = None
|
||||
self.cache_dir = cache_dir
|
||||
self.hf_token = hf_token
|
||||
self.load_model(model_repo, cache_dir, hf_token, num_threads=num_threads)
|
||||
self.load_model(
|
||||
model_repo,
|
||||
cache_dir,
|
||||
hf_token,
|
||||
num_threads=num_threads,
|
||||
providers=providers,
|
||||
)
|
||||
|
||||
def load_model(
|
||||
self, model_repo, cache_dir=None, hf_token=None, num_threads: int = None
|
||||
self,
|
||||
model_repo,
|
||||
cache_dir=None,
|
||||
hf_token=None,
|
||||
num_threads: int = None,
|
||||
providers: Sequence[str | tuple[str, dict[Any, Any]]] = None,
|
||||
):
|
||||
"""Load the model and tags from the specified repository.
|
||||
|
||||
@ -203,7 +240,7 @@ class Tagger:
|
||||
hf_token (str, optional): HuggingFace token for authentication. Defaults to None.
|
||||
num_threads (int, optional): Number of threads for ONNX runtime. Defaults to None.
|
||||
"""
|
||||
with console.status("Loading model..."):
|
||||
with self.console.status("Loading model..."):
|
||||
csv_path = huggingface_hub.hf_hub_download(
|
||||
model_repo,
|
||||
LABEL_FILENAME,
|
||||
@ -233,7 +270,7 @@ class Tagger:
|
||||
self.model_target_size = height
|
||||
self.model = model
|
||||
|
||||
def prepare_image(self, image):
|
||||
def pil_to_cv2_numpy(self, image):
|
||||
"""Prepare the image for model input.
|
||||
|
||||
Args:
|
||||
@ -270,14 +307,14 @@ class Tagger:
|
||||
|
||||
def tag(
|
||||
self,
|
||||
image: Image.Image | list[Image.Image],
|
||||
image: Union[Input, List[Input]],
|
||||
general_threshold=0.35,
|
||||
character_threshold=0.9,
|
||||
) -> Result | list[Result]:
|
||||
"""Tag the image and return the results.
|
||||
|
||||
Args:
|
||||
image (PIL.Image | list[PIL.Image]): Input image or list of images.
|
||||
image (Union[Input, List[Input]]): Input image or list of images to tag.
|
||||
general_threshold (float): Threshold for general tags.
|
||||
character_threshold (float): Threshold for character tags.
|
||||
|
||||
@ -285,8 +322,10 @@ class Tagger:
|
||||
Result | list[Result]: Tagging results.
|
||||
"""
|
||||
started_at = time.time()
|
||||
images = [image] if isinstance(image, Image.Image) else image
|
||||
images = [self.prepare_image(img) for img in images]
|
||||
input_is_list = isinstance(image, list)
|
||||
images = image if isinstance(image, list) else [image]
|
||||
images = [to_pil(img) for img in images]
|
||||
images = [self.pil_to_cv2_numpy(img) for img in images]
|
||||
image_array = np.asarray(images, dtype=np.float32)
|
||||
input_name = self.model.get_inputs()[0].name
|
||||
label_name = self.model.get_outputs()[0].name
|
||||
@ -300,6 +339,8 @@ class Tagger:
|
||||
self.logger.info(
|
||||
f"Tagging {image_length} image{ 's' if image_length > 1 else ''} took {duration:.2f} seconds."
|
||||
)
|
||||
if input_is_list:
|
||||
return results
|
||||
return results[0] if len(results) == 1 else results
|
||||
|
||||
|
||||
|
Reference in New Issue
Block a user