42 lines
2.6 KiB
Markdown
42 lines
2.6 KiB
Markdown
# wdtagger
|
|
|
|
[](https://codetime.dev)
|
|
|
|
`wdtagger` is a simple and easy-to-use wrapper for the tagger model created by [SmilingWolf](https://github.com/SmilingWolf) which is specifically designed for tagging anime illustrations.
|
|
|
|
## Installation
|
|
|
|
You can install `wdtagger` via pip:
|
|
|
|
```bash
|
|
pip install wdtagger
|
|
```
|
|
|
|
## Usage
|
|
|
|
Below is a basic example of how to use wdtagger in your project:
|
|
|
|
```python
|
|
from PIL import Image
|
|
from wdtagger import Tagger
|
|
|
|
tagger = Tagger() # You can provide the model_repo, the default is "SmilingWolf/wd-swinv2-tagger-v3"
|
|
image = Image.open("image.jpg")
|
|
result = tagger.tag(image)
|
|
print(result)
|
|
```
|
|
|
|
You can input a image list to the tagger to use batch processing, it is faster than single image processing (test on RTX 3090):
|
|
|
|
```log
|
|
---------------------------------------------------------------------------------- benchmark 'tagger': 5 tests -----------------------------------------------------------------------------------
|
|
Name (time in ms) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
|
|
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
test_tagger_benchmark[16] 540.8711 (1.0) 598.5156 (1.04) 558.2777 (1.0) 22.2954 (4.10) 549.9650 (1.0) 21.7318 (2.51) 2;2 1.7912 (1.0) 10 1
|
|
test_tagger_benchmark[8] 558.9445 (1.03) 576.7220 (1.0) 567.9235 (1.02) 5.4381 (1.0) 568.7336 (1.03) 8.6569 (1.0) 2;0 1.7608 (0.98) 10 1
|
|
test_tagger_benchmark[4] 590.6479 (1.09) 626.7126 (1.09) 597.9712 (1.07) 11.0124 (2.03) 594.5067 (1.08) 10.7656 (1.24) 1;1 1.6723 (0.93) 10 1
|
|
test_tagger_benchmark[2] 622.8689 (1.15) 643.5122 (1.12) 630.1096 (1.13) 7.2365 (1.33) 627.1716 (1.14) 9.5823 (1.11) 3;0 1.5870 (0.89) 10 1
|
|
test_tagger_benchmark[1] 700.6986 (1.30) 816.3089 (1.42) 721.7431 (1.29) 33.9031 (6.23) 712.6850 (1.30) 12.8756 (1.49) 1;1 1.3855 (0.77) 10 1
|
|
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
|
|
```
|